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1 Introduction

Classi�cation and counting of di�erent types of white blood cells (leukocytes) in
bone marrow play a vital role in the �eld of hematology. Some diseases, such as
leukemia, result in abnormal distribution of leukocytes with di�erent maturation
degrees. Automated classi�cation is thus advantageous to e�ciently help medical
diagnosis.

Figure 1.1: Scan of Stained Bone Marrow

Plenty of works have been done to count and to classify leukocytes in blood [1�3]
and bone marrow [4]. Most of those use deep learning as a major tool. Prior to the
step of classi�cation, the cells should be properly segmented to reduce the di�culty.
Suppose that an initial circle is given during the localization of cells in advance,
which, however, may be not precise. The task of this thesis is to re�ne the contours
on the basis of these circles to achieve more accurate segmentations of leukocytes
using classical methodologies.

Following this introduction, the state of the art is presented in Chapter 2, in which
a series of smoothing and segmentation algorithms is introduced. Some candidate
methodologies are investigated in the beginning of Chapter 3. The feasibility of
several algorithms is analyzed. Further, a pipeline for the entire process of contour
re�nement based on the initial circles is outlined and performed.

The detailed results including a number of segmentation examples and signi�cant
statistics are shown in Chapter 4. Moreover, the methodologies used in this thesis are
evaluated based on the experimental results. At the end of this thesis, conclusions
are drawn. Following this, improvements and outlook are presented.
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2 State of the Art

Before turning to the concrete task of this thesis, some state of the art techniques
related to image smoothing and segmentation are introduced in this chapter.

The widely used region-based segmentation algorithm Watershed [5�8] is presen-
ted in Section 2.1. Active Contour Models, a series of contour-based methods, can
be found in sections 2.2 and 2.3, in which two major algorithms, namely Snakes [9]
and Active Contours Without Edges (ACWE) [10], are introduced.

In Section 2.4, the method SLIC Superpixel [11] is brie�y introduced. Following
this, the technique Region Adjacency Graphs (RAG) [12] based on the segmentation
of SLIC is introduced. Moreover, the smoothing algorithm L0 Gradient Minimiza-
tion [13] is presented in Section 2.6.

In Section 2.7, several miscellaneous basic techniques are introduced, such as
Gaussian Blur and Median Filter. In addition, a series of histogram equalization
techniques [14, 15] are introduced, including the basic Histogram Equalization, the
Adaptive Histogram Equalization (AHE) and the Contrast Limitied Adaptive His-
togram Equalization (CLAHE).

At the end of this chapter, two similarity coe�cients are introduced, namely the
Jaccard [16] and the Sørensen�Dice [17, 18] similarity coe�cient.

2.1 Watershed

A grayscale image can be considered as a topographic relief [8], in which the in-
tensity of a pixel is interpreted as elevation. With this analogy, the features of an
image can be metaphorically regarded as peaks, valleys or plateaus. In the �eld of
image segmentation, the desired contours may not be merely related to global sharp
changes, but also to characteristics of zones nearby. Watershed is an algorithm, in
which such features of the neighborhood are also taken into account.

With Watershed, seeds as attitude minima are marked in advance. Then "water"
is �ooding from those seeds gradually, such that catchment basins are developing.
When di�erent catchment basins begin to merge, watershed lines appear between
these.

The selection of seeds and the sequence of �ooding are two important parts during
the process. Automatically marked seeds may lack robustness, especially if the image
contains noise. Thus, the preprocessing part is challenging and rather problem
dependent.
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2 State of the Art

2.1.1 De�nitions

Before details of the algorithm are introduced, some de�nitions relevant to the ana-
logy between image and topographic relief are shown below.

Connectivity Neighborhood of a given pixel (4-connectivity means the pixels to
its adjacent above, below, left and right are de�ned as its connected pixels;
6-connectivity means its adjacent pixels at hexagonal corners; 8-connectivity
means 8 pixels in 3×3 of its adjacency, etc.)

Path P from pixel x0 to xn of image I is a list of connected pixels: (x0,x1, ...,xn)

Length of path P(x0,xn) is denoted as l(x0,xn) =
∑n−1

i=0 |I(xi+1)− I(xi)|

Connected Component Ω is a set of connected pixels

Geodesic Distance dI(xi,xj) = inf{l(xi,xj)}

Geodesic In�uence Zone is a set of pixels in image, from which the geodesic dis-
tance to every pixel of some Ωi is less than to other connected components:
izI(Ωi) = {x ∈ I,∀j ∈ [1, n]/{i},∀xi ∈ Ωi,xj ∈ Ωj, dI(x,xi) < dI(x,xj)}

2.1.2 Immersion Algorithm

The algorithm used in this thesis is the so-called Immersion Algorithm [6], which
simulates a surface progressively sinking down into a lake. At each prede�ned min-
imum of the surface, a well is drilled in advance, such that there already exists some
water. With the surface being drowned, water from di�erent wells may �ow together
to build watershed lines.
With the de�nitions introduced in Section 2.1.1, this algorithm is formally presen-

ted in two steps as follows.

Step 1: Sorting

Every pixel of the image is increasingly sorted by its intensity, and pushed into a
FIFO queue (the lowest intensity comes �rst). Pixels with identical intensities are
sorted randomly. Other more e�cient sorting techniques can be found in [5, 6, 19].

Step 2: Flooding

Given some minima which are labeled with di�erent positive integers (1,2,3,...) at
the beginning. Pixels which have not been visited yet are labeled as 0. Pixels which
are regarded as watershed lines are labeled as -1. The �ooding step starts with the
pixels from the FIFO queue mentioned before. Suppose one pixel is being processed,
it is applied with following algorithm.
If this pixel has already been visited, label every pixel in its Geodesic In�uence

Zone izI(Ωi), where I is the entire image, Ωi is the region with the same label as
this pixel.

4



2.2 Active Contour Models

If this pixel has not been visited yet, that means its label is non-positive, then its
neighbors as per de�nition of connectivity are investigated. If all neighbors are not
labeled, that means this pixel is a new minimum, which belongs to no discovered
region. This pixel gets a new label. If the neighbors are di�erently labeled, that
means this pixel lies on the edge of di�erent regions, thus it is labeled as watershed
line. If each neighbor has the identical label, then this pixel gets the same one.

Figure 2.1 shows this in a 1D example visually. A pseudo code of this algorithm
can be found in Appendix A.1.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.1: Watershed Example in 1D.

There are three catchment basins with two discovered wells (minima).

These two minima are marked as orange and green in Figure (a). With

increasing water level, there exists a new minimum, which belongs to no

discovered catchment basins. Figure (d, e) illustrates this in the middle

catchment basin in blue. In Figure (f), water from the left two catchment

basins begins to merge, thus there exists a watershed line. The same

phenomenon happens in Figure (g) between the right two catchment

basins. Therefore, two watershed lines are found, as Figure (h) shows.

2.2 Active Contour Models

Active Contour Model (ACM), also called Snakes, is one of the most widely used
algorithms in image segmentation. The term Snake is used in this thesis to refer to
an evolving curve. The basic idea of Snakes [9] is to build several mappings from
original image to energies, which refer to constraints upon the curve and features of
the image, and to minimize the sum of total energy along the curve in the image.
The curve with minimal energy is then the desired solution.

The speci�c algorithm introduced below is based on the main idea in the original
paper [9] and the source code in [20], where the energy function is designed as

5



2 State of the Art

E ∗snake =
∑
x∈C

Esnake(x) (2.1)

=
∑
x∈C

Eint(x) + Eimage(x) + Econ(x), (2.2)

where C is the curve to be optimized, and Eint, Eimage and Econ represent the
internal, image and constraint energy respectively.

2.2.1 Internal Energy

The internal energy interprets the continuity Econt and the smoothness Ecurv of a
Snake. These can be represented by the �rst and the second derivatives, i.e. gradient
and curvature. In the discrete case, which is common in image processing, the �nite
di�erence can be used to approximately calculate the derivatives. Thus, the internal
energy function can be written as:

Eint = Econt + Econv (2.3)

=
1

2
αi(x)‖xi − xi−1‖2 +

1

2
βi(x)‖xi−1 − 2xi + xi+1‖2, (2.4)

where x0,1,...,n are n+ 1 points on the curve C. Two parameters, αi(x) and βi(x),
can be adapted to weigh the in�uences of two constraints. To simplify the problem,
these two parameters are often chosen as constant.
The continuity term serves to minimize the distance of adjacent points. It has

the e�ect that the Snake is forced to shrink. A larger α makes the Snake contract
faster. The smoothness term avoids oscillations and corners, as the curvature of a
corner is theoretically in�nite. In other words, the parameter β can be set to 0 if
the desired solution is allowed to contain a corner.

2.2.2 Image Energy

The desired curve is closely related to the features of the image itself, such as
intensity and boundary. The image energy can be de�ned as a weighted combination
of two energy functionals to attract Snakes to salient features in images:

Eimage = wlineEline + wedgeEedge (2.5)

Line Functional

The simplest way to design a line functional is the image intensity: Eline = I(x).
Depending on the weight wline, the Snakes are attracted to lighter or darker regions.
Smoothing or noise reduction �lters can be applied to the image, such that the line
functional is denoted as Eline = �lter(I(x)).
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2.3 Active Contours Without Edges

Edge Functional

Edges can be found using the gradient of an image. A simple edge functional can
be set as Eedge = −|∇I(x)|2 with a negative sign, since a minimized energy is the
goal.
Plenty of methods can detect edges. Most of them use a convolutional gradient

�lter, such as Sobel, Scharr, Laplacian etc. Another �lter is speci�cally introduced
in the original paper [9]: the Marr�Hildreth edge detection method [21], which
operates by convolving the image with the Laplacian of Gaussian function (LoG).
After smoothing with Gaussian �lter, a larger edge region (or "energy well", as
in [9]) is detected and attract the Snakes more strongly. In this thesis, the Sobel
Operator is used.

2.2.3 Constraint Energy

In some cases, speci�c areas with fewer salient features for the Snakes are still meant
to be part of the �nal curve. An extra term such as −k(x1 − x2)

2, k > 0 can be
added to the function to compose a "spring" between x1 and x2. Further, a "vol-
cano" can be created, for example, by putting a point into denominator, such that
the Snake is repelled by it.

The numerical approximation of this algorithm is discussed in the end of the next
section, together with ACWE.

2.3 Active Contours Without Edges

Another type of energy functional is introduced by Chan and Vese in [10] to seg-
ment images with di�erent intensity features but without clear edges. Compared to
classical ACMs, this method has the same philosophy but with distinct focal points.

2.3.1 Energy Functional

Assuming that an image is divided into two areas by a curve C. The energy functional
of ACWE is de�ned as

EACWE(I1, I2, C) = µ · l(C)

+ λ1

∫
inside(C)

|I(x0)− I1|2dx

+ λ2

∫
outside(C)

|I(x0)− I2|2dx (2.6)

where I1, I2 are the average intensities inside and outside curve C respectively and
l(C) represents the length of the curve C. The weights µ, λ1 and λ2 are, as in Snakes,
problem dependent and user-designed: a larger µ makes the curve more circular; if
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2 State of the Art

λ1 < λ2, the region inside of the curve C contains a larger range of intensities than
outside, and vice versa.
This algorithm is not based on edge features, but rather on the regional intensity.

Thus, an image without salient edges can also be well segmented.

2.3.2 Numerical Approximation

In [9, 10], numerical approximation methods are introduced. The main task is to
solve a minimization problem.
Finite di�erences are used to approximate the derivatives and Gradient Descent is

used to �nd the local minimum. Morphological Snakes, introduced in [22], is another
variant of Active Contour Models, where morphological operators are performed to
solve partial di�erential equations.

2.4 SLIC Superpixels

A cluster of similar pixels next to each other can be grouped to a larger pixel, a so-
called superpixel. SLIC (simple linear iterative clustering) [11] is one of the simplest
and most e�cient algorithms and is brie�y introduced below.
Assume, k superpixels are wanted. First of all, k cluster centers are evenly initial-

ized in a CIELAB color space image, such that the gap between every two centers is
l =

√
nI/k, where nI is the number of pixels in the image I. Then the distance D

between cluster center and each pixel in a 2l× 2l square around it can be calculated
as:

dc =
√

(lc − li)2 + (ac − ai)2 + (bc − bi)2, (2.7)

ds =
√

(xc − xi)2 + (yc − yi)2, (2.8)

D =

√
dc

2 +

(
ds
l

)2

m2, (2.9)

where center Ic = [lc, ac, bc, xc, yc]
T and pixel Ii = [li, ai, bi, xi, yi]

T . The constant m
represents the compactness of superpixels. The pixels are assigned to the center,
to which it has the shortest D. Next, new cluster centers are calculated. These
steps are repeated until the residual error for updates of cluster centers less than a
threshold.
Using this method, a complex noisy image can be signi�cantly simpli�ed. There-

fore, it is increasingly used as a preprocessing tool to reduce redundancy.

2.5 Region Adjacency Graphs

The region boundary based Region Adjacency Graphs (RAG) can merge the super-
pixels to larger ones. The center of each superpixel is the node. Between every two
adjacent superpixels the nodes are connected and the value of the connection is the

8



2.6 L0 Gradient Minimization

average value of the gradient along the edge between these two superpixels. After
these steps, a RAG is created.

The adjacent superpixels, whose connection has the lowest value, are merged, and
this processing is executed iteratively. To terminate merging well-timed, a prede�ned
threshold is required. If the connection value is smaller than this threshold, these
two regions are merged.

2.6 L0 Gradient Minimization

An e�cient smoothing operation should synthesize similarity and maintain salient
features. This goal can be realized through L0 Gradient Minimization [13]. It
reduces the number of non-zero gradient pixels with the constraint that the smoothed
image should not signi�cantly di�er from the original one.

Given an input image I and the result image S, a term to show the di�erences
between them can be written as

∑
(S − I)2. Besides, a counting function C(S)

counts the non-zero gradients. To implement the idea expressed before, the optim-
ization problem is de�ned as

min

{∑
(S − I)2 + λ · C(S)

}
, (2.10)

where λ gives the weight of numbers of non-zero gradients, which indicates the
smoothness.

Figure 2.2: L0 Gradient Minimization in 1D.

The blue curve is the original plot, the orange one is smoothed by L0

Gradient Minimization. It can be seen that the prominent changes are

kept, while slight ones are ignored.
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2 State of the Art

2.7 Miscellaneous Techniques

2.7.1 Gaussian Blur

Gaussian convolutional �lter is a commonly used operator for blurring. The following
two matrices are examples of the so-called Discrete Gaussian Kernel in 3 and 5
dimensions.

1

16

 1 2 1
2 4 2
1 2 1

 1

273


1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1


2.7.2 Median Filter

Median �ltering is a powerful operator to remove noise like salt and pepper. After
sorting the intensities inside a window, the original intensity is replaced by the
median value.

2.7.3 Histogram Equalization

The ordinary histogram equalization is based on the Cumulative Distribution Func-
tion (CDF). The equalized value of an intensity is de�ned as below.

h(I) = round
(CDF(I)− CDFmin

w × h− CDFmin

× (L− 1)
)
, (2.11)

where CDF(I) is the value of the intensity I in cumulative histogram, CDFmin is
the minimum value in cumulative histogram, w, h represent the weight and height
of the image. L is the intensity level. It is 256 if the data type is unsigned short in-
teger. Rather than globally in ordinary histogram equalization, the adaptive version

Figure 2.3: CLAHE Example: The blue curve is the original plot, the orange one is

applied with CLAHE.
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2.8 Similarity Comparison

performs this process regionally: the neighborhood region of each pixel is applied
with the ordinary histogram equalization. It is advantageous to enhance the local
contrast, in this case the contrast between cytoplasm and background. However,
this method might amplify noise in the parts which are quasi-constant. To solve
this problem, the contrast limited adaptive histogram equalization is introduced.
Through adding an ampli�cation threshold, the enhancement of noise is reduced.

2.8 Similarity Comparison

2.8.1 Jaccard Similarity Coe�cient

The Jaccard Similarity Coe�cient [16], also known as Intersection over Union, is
de�ned as:

SCJ =
|A
⋂
B|

|A
⋃
B|

. (2.12)

2.8.2 Sørensen�Dice Similarity Coe�cient

Likewise, the Sørensen�Dice Similarity Coe�cient [17] is de�ned as:

SCSD =
2(|A

⋂
B|)

|A|+ |B|
. (2.13)

2.8.3 Equivalence Relation

For the same A and B, the two coe�cients are connected through this equation:

SCSD =
2 · SCJ

1 + SCJ

. (2.14)

In this thesis, the Sørensen�Dice Similarity Coe�cient is used.

0.0 0.2 0.4 0.6 0.8 1.0
Jaccard Index

0.0

0.2

0.4

0.6

0.8

1.0

Sø
re
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-D
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de

x

Figure 2.4: Equivalence Relation of Sørensen�Dice and Jaccard
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3 Approaches

In Chapter 2, the state-of-the-art methods and algorithms are introduced. This
chapter seeks to address how these methods are applied.

First of all, the test conditions and database are presented. In the second section
of this chapter, the ground truth contours are investigated to extract the salient
features of leukocytes. After that, a series of candidate methodologies are chosen
to test the feasibility, among which four sets of methods are proven to be adequate
for the task. Their results are shown in Section 3.3. The application of these
methodologies and their evaluations are described in sections 3.4 and 3.5 respectively.

3.1 Test Conditions

The aim of this thesis is to re�ne the segmentation contours of leukocytes based on
initial circles. The scans are stained bone marrow, on which the radius and center
of each leukocyte are given. With this in mind, single-cell images are cropped from
large-scale scans in a �rst step. Each single-cell image has three channels in the
RGB color model. Ground truth contours are provided to evaluate the results of
re�nement. In this thesis, a pre-classi�cation is not considered.

In Figure 3.1, some examples with ground truth contours are shown.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.1: Ground Truth Examples: green contours are ground truth.
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3 Approaches

3.2 Preliminary Considerations

3.2.1 Noise Reduction

Usually, the �rst step in image processing is to reduce noise. The noise in this case
consists mainly of small blobs in the background. Gaussian Blur or Median Filter
can be used to reduce this type of noise. The details are discussed in the following.

3.2.2 Color Space

Attention must be paid when using the package OpenCV [23], as the default color
model is BGR, while some other packages use RGB color model as default. After
applying Pappenheim staining, the main color of scans is purple, which is synthesized
from red and blue. In the following experiments, if a single-channel image is needed,
the original image is transformed to R channel, B channel or gray channel, which is
combined by three channels:

GRAY = 0.299 · R+ 0.587 ·G+ 0.114 · B

3.2.3 Ground Truth Analysis

In addition to the irregular shapes of blood cells and the complexity of the back-
ground, the leukocytes are of various types, which enhances the di�culty of seg-
mentation. In order to understand more clearly how the cells should be segmented,
the ground truth contours are analyzed.
Since the majority of cells is circular, it simpli�es the process to transform the

original image from cartesian coordinates to polar coordinates. The details of this
are introduced in Section 3.3.
The gradient represents the rate of change. Thus, the edges of di�erent regions

generally contain large gradients, which makes the gradient one of the most signi-
�cant features in the �eld of segmentation.
Two saliently large gradients are located

� between the nucleus and the cytoplasm, and

� on the cell membrane.

The contour of a cell is positioned on the outer salient gradient. Therefore, the main
task in segmenting a cell is to �nd the gradient on the cell membrane.
If a cell is ideally centrosymmetric, the original image, represented as 2D matrix,

can be simpli�ed to a 1D vector. This vector represents the values alongside a radius.
Due to the symmetry just one vector alone can describe the entire cell.
With this simpli�cation in mind, the contour can be clearly detected. The problem

is to �nd out whether this simpli�cation is ful�lled in reality and how images can
be automatically simpli�ed in general.
Another attempt is the Active Contour Model, such as Snakes and ACWE, which

are extremely �exible and controllable.
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3.3 Methodology

The third idea is the Watershed Algorithm, which simulates an image as a topo-
graphic relief.
Based on the algorithms in Chapter 2, the details of processing are introduced

below.

3.2.4 Standard Operating Procedure

A standard operation procedure can be created to pursue an automatic processing
for the task. This means, despite of the di�erences of input cells, such as the image
size, the range of intensity, the shape of cells etc., a chain of methodologies must
match all of them and the output contour should achieve better results compared
to initial ones.

Preprocessing:

Normalization;
Smoothing;

Segmentation
get single cell images;
resize images; ContourCell Scan

Figure 3.2: Standard Operating Procedure

Two major steps are preprocessing and segmentation. The preprocessing step
includes

� noise reduction, such as blur �ltering and median �ltering,

� smoothing, such as Superpixel, Region Adjacency Graphs (RAG) and L0

Gradient Minimization,

� normalization, such as image resizing and equalization.

The goal of the segmentation step is to perform the segmenting methodologies
upon the preprocessed images and to output the �nal uniform contours, which in-
clude

� analyses of gradients in polar coordinates,

� Watershed, such as Immersion Algorithm,

� active contour models, such as Snakes and ACWE.

In the following sections the details of these two steps are discussed.

3.3 Methodology

In the last section, the preliminary considerations have been taken. Concrete meth-
ods are described on the basis of above attempts in this section.
Preprocessing methodologies are introduced in Section 3.3.1. Following this, the

primary segmentation algorithms are presented.
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Figure 3.3: Smoothing Examples

3.3.1 Preprocessing

In order to reduce noise and extract features, the original single-cell image is prepro-
cessed in the initial stage. As discussed in the previous section, the gradient is the
main feature during the process. Therefore, image smoothing is chosen as a noise
reduction method to eliminate redundant gradients. Some examples are shown in
Figure 3.3. It is obvious that preprocessing extracts the prominent gradients and
reduces noise.
In the following, some smoothing algorithms are introduced and compared.

Smoothing Filters

As mentioned in Section 2.7, two basic �lters, Gaussian Blur and Median Filter, are
used. As structuring element of Median Filter a diamond is used. In this thesis,
these two methods are applied to reduce blob-like noise in the background and
smooth the superpixels inside of cells. Figure 3.3 shows some examples of them. It
can be seen that the gradient images after applying with smoothing �lters contain
less noise. However, the results are not as good as other smoothing techniques, such
as L0 Gradient Minimization.

L0 Gradient Minimization

L0 Gradient Minimization is a method to make images smoother while keeping the
salient features of the original image. By reducing the amount of non-zero gradients,
the indistinct ones within nuclei and cytoplasms are wiped away, while the salient
gradients maintain.
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3.3 Methodology

It is known from Equation 2.10 that the weight of the counting function λ controls
the smoothness. Figures 3.3 (c,d,h) show the results after applying with L0 Gradient
Minimization using default setting λ = 0.02. As the default setting of this algorithm
produces desired results, further procedures are unnecessary.
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3-c
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3-d

n_seg:500, cmp:10

3-e

Figure 3.4: SLIC with di�erent parameters - Cell 1

SLIC Superpixels

As discussed in Section 2.4, SLIC can be used to reduce noise by combining adja-
cent and similar pixels into a larger superpixel. The intensity of each superpixel is
replaced by the mean value of all original pixels. After these steps, a cell is divided
into several regions. Within each region, the intensity is constant. Furthermore, the
gradient is non-zero only on the edges of each superpixel.
Two main parameters for this process are the maximal number of superpixels

and compactness of superpixels. An example with di�erent parameters is shown in
Figure 3.4.
It is obvious that the compactness should not be less than 10. Otherwise, even

a large number of segments can not guarantee the correctness of segmented image.
For instance, if compactness is set to 10 and the number of segments is small, the
shape of cell 1 is well segmented and the image is smoothed (see Figure 3.4, columns
a-b).
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Figure 3.5: SLIC with di�erent parameters - Cell 2

Another example in Figure 3.5 shows, if the cytoplasm is similar to the outside
region, an inadequate number of superpixels can cause the "birth defect": the low
gradient between cytoplasm and outside region is swiped away and these two regions
are merged, so that a proper segmentation is not possible anymore.

In this thesis, the number of segments is set to 100 and compactness is set to
10. A relatively large number of segments prevents the pixels around indistinct cell
membranes from merging. The compactness balances the regularity of shapes and
preservation of smooth arcs on the cell membrane.

Region Adjacency Graphs

As introduced in Section 2.5, RAG can be used to merge superpixels to a larger one,
such that the images can be further smoothed. The algorithm stated in Section 2.5
is presented with an example cell in Figure 3.6.

During the step of merging, the prede�ned parameter threshold represents, less
than which connection value two superpixels are merged. Figure 3.7 shows the
merged RAGs with di�erent thresholds. Some conclusions can be drawn from
these examples. First, the unique constant threshold is di�cult to de�ne for all
cells. Therefore, it could ruin the automaticity. Moreover, it tends to under-
segmentation, which results in irreparable defects. To overcome this disadvantage,
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Figure 3.6: RAG Examples.

Figure 3.6 (b) is performed SLIC Superpixel with n_segments=100, com-

pactness=10; The merging in Figure 3.6 (c) uses thresh=0.07.

a small threshold is necessary. However, it makes this step less meaningful, as only
very similar superpixels are merged. With this in mind, the hierarchical merging
will not used. Instead of this, Gaussian Blur and Median Filter are applied after
SLIC Superpixel to smooth the image.

Normalization

As stated previously, an automatic algorithm is the goal of this task. To achieve
this, normalization is a necessary step. Three features of images, that may vary, can
in�uence the uniformity of images:

� image size;

� image contrast;

� range of intensity.

In order to provide the segmentation mechanism with uniform images, the initial
input images are scaled to the same size on the basis of the radius of cells. In
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Figure 3.7: RAG Examples with di�erent thresholds. Images above are merged

RAGs, below are �nal images after merging.

this thesis, the radius of cells are given as parameter and the scaled image size is
200×200.

It is known that one of the challenges of this task is to distinguish the nucleus, the
cytoplasm and the region outside of the cell. However, the di�erence of intensity
between the cytoplasm and the region outside of the cell may not be prominent
enough, so that some algorithms consider these regions as one. This makes the fol-
lowing segmentation unsuccessful. The technique to enhance the contrast of images
is Contrast Limited Adaptive Histogram Equalization, as introduced in Section 2.7.
In this thesis, images are applied with this technique prior to segmentation.

Some algorithms, like Snakes, use energy functionals, which are bound up with the
intensities of images. However, the some cells are brighter, while others are darker.
In order to pursue the uniformity of images, the range of intensities are rescaled
homogeneously to a �xed one. In this thesis, the normalized range is [0, 255]. In
addition, gradient images are also rescaled to this range to show the results visually.
Figure 3.3 shows some examples using various smoothing methods and represents

the e�ect of normalization.

3.3.2 Segmentation

Gradient in Polar Coordinates

The idea is to transform the image from cartesian to polar coordinates and analyze
each column of pixels, which represents the radius line. In the ideal case, the desired
position within each column should have salient features, such that it can be easily
found, as shown in [24].
In reality (see Figure 3.8), however, it is ambiguous to determine which pixel

belongs to the contour. In (a-c), the contour lines are relatively easy to �nd, as
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(f) Example 6
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(j) Example 10

Figure 3.8: Gradient in Polar System Examples - Ground Truth Analysis.

Di�erent intensities are illustrated as di�erent colors. For images in

polar coordinates, the top line represents the cell center in cartesian

coordinates. Ground truth contours are shown in both coordinates.

To show the intensity distribution and the location of the contours in

polar coordinates, di�erent color maps are used.
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the salient gradients of columns are quasi horizontal. The contour lines in (d-g) are
not the most salient gradient lines, because nuclei are much darker than cytoplasm
regions. It makes the detection of contours di�cult. In (g-j), the nuclei are irregular,
such that it is hard to �nd an algorithm to recognize contours.

In summary, the examples show, that the contour is easy to �nd, if the cytoplasm
region is as dark as the nucleus. If the cytoplasm is more similar to the background
than to the nucleus, it makes this local method work less well. In the worst case,
the nucleus is irregular.
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Figure 3.9: Watershed Examples 3D.

(a-d) represent original images, original images with marked minima,

gradients of original images with marked minima and gradients of wa-

tershed lines results respectively. Z-Axis represents intensities.

The algorithm used in this thesis is non-parametric marker-based Watershed.
As the parameters for this method are input image and the marker image, it is
necessary to select the markers and masks properly. Figure 3.9 shows examples using
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Watershed. Figure 3.9 (b) shows marked images based on the original ones in 3.9 (a).
Figure 3.9 (c) shows the gradients of original images, and 3.9 (d) shows the results
ofWatershed. The di�cult part of applyingWatershed is proper preprocessing. The
details can be found in previous sections.

In this thesis, 5% of initial radius is added to construct a circular mask. Inside
of the cell, a circular marker is de�ned with a radius of 85% of initial one. If the
marker is too small, the watershed line tends to stop on the most salient gradient,
which could be the edge between the nucleus and the cytoplasm. If the marker is
too big, the process could fail for some irregular cells, as the catchment basins may
be over�lled, such that the watershed line disappears. The gradient image of the
original single-cell image is chosen as input image. The technique used here is the
Sobel Operator.
After the previous steps, Watershed can be applied. As output, an image of

marking contours as -1 is returned. It is notable that the rectangle boundary of the
whole image is also detected as contour. Therefore, this boundary should be ignored
to achieve a pure contour for the following similarity evaluation.

Snakes

As stated in Section 2.2, Snakes is a segmentation algorithm using the concept of
energy minimization. One of the most distinguishing features of Snakes is that the
�nal contour is controllable using few parameters. A simple example is shown in
Figure 3.10, with di�erent continuity weights α, the initial contour can be set to
stop on the edge between nucleus and cytoplasm or on the cell membrane.
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Figure 3.10: Snakes Examples with di�erent parameters

The white circles are initial contours, the green are found contours.

Due to the �exibility of this methodology, a set of proper parameters can be
obtained by experimental analyses. On the other hand, the complexity of parameter
settings brings instability. Figures 3.10 (c,d) show that if the parameters are not
properly set, it easily leads to wrong results.
A guidance is developed in [25] to select optimal parameters for this algorithm.

However, additional information is necessary, such as the shape of objects. Despite
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that circular cells are majority, the number of irregularly shaped cells can not be
ignored. Furthermore, they are the most challenging part in this thesis. To �nd
the proper parameters, one of them is variable while the others are �xed. In this
thesis, the continuity weight α is chosen as variable, as the others can be reasonably
prede�ned. They are listed and explained below:

� β: smoothness parameter, set to 0, as it allows the shape of cells irregular;

� wline: weight of intensity, set to 1, such that the Snakes are attracted to light
region. In other words, �nal contours are repelled by nuclei of the cells to be
segmented and the adjacent cells;

� wedge: weight of gradient, set to 3, as the gradient plays a more important roll
than intensity.

With increasing continuity weight α from 0.01 to 0.5, the best average value of
Dice-Index can be obtained when α = 0.2. This experiment is conducted based on
500 cells randomly chosen from dataset. The experimental results are the averages
of three approaches, which is shown in Table 3.1.

α 0.01 0.1 0.2 0.3 0.4 0.5
Dice 0.895 0.905 0.916 0.912 0.912 0.911

Table 3.1: Average of Dice-Indices with increasing α.
Other parameters are set as constants.

Active Contours Without Edges

Another algorithm adapted from Snakes is called Active Contours Without Edges.
Similar to the previous attempts, some experiments are conducted to investigate if
this algorithm can achieve the desired goals.
As stated in Equation 2.6, there are three controllable parameters. Due to the

diverse intensity distribution of di�erent images, two weights for intensities are set
to constant: λ1 = λ2 = 1. The reasons are:

1. The average values of intensities inside and outside of a cell are approximately
of same level, as part of nuclei belonging to adjacent cells are also cropped
into single-cell images. O�sets can be compensated by the length term;

2. The feasibility of this algorithm can be easily analyzed with increasing value
of the length parameter µ.

At this point the results with various µ are shown in Figure 3.11. It is clear that
this algorithm is not suitable for this task. Here are some explanations:

� This algorithm is globally oriented, therefore the adjacent cells can in�uence
the results. As shown in Figure 3.11 Cell 3, the dark region on the left side is
regarded as a part of cell;
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Figure 3.11: ACWE Examples with di�erent parameters
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Figure 3.12: Examples for Global ACWE
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� This algorithm is very intensity dependent, but not sensitive to gradients, such
that it is appropriate for images without salient edges, as its name implies.

However, it can be used as a localization tool globally, as it shows in Figure 3.12.

3.4 Application

Turning now to the application with the chosen methodologies:

Preprocessing

{
L0 Gradient Minimization (L0)

SLIC Superpixel (SP)

Segmentation

{
Watershed (WS)

Snakes (Snakes)

After the parameters of these methods have been set, a series of experiments can
be carried out. A detailed pipeline for the entire processing is shown in the next
chapter.
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4 Evaluation

Experiments and results using algorithms discussed previously are presented in this
chapter. A range of segmented examples with di�erent qualities are shown. Follow-
ing this, advantages and disadvantages for di�erent procedures are discussed based
on the results. Furthermore, some statistical tables and plots are shown to give a
direct view of evaluation.

4.1 Experiments

The results are based on 3500 cells. Algorithms are processed as shown in Figure 4.1.

ResizeCrop

Ground-Truth

Initial Circle

Whole-Blood-Scan Single-Cell-Image

L0 Smoothing SLIC Superpixel

Median Filter

Gaussian Blur

CLAHE

Watershed

Snakes

CLAHE

Median Filter

Contour

Evaluation

Dice-Index

Figure 4.1: Outline of Contour Re�nement
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4.1.1 Stability

The initial circle is given as the minimal enclosing circle of the ground truth contour,
which is quite accurate. In the real world, the initial circle may not be as precise
as in this case. In addition, the parameters of each methodology are generated only
once. Therefore, the stability of these methods is a big challenge. To test whether
they still work for initial circles with errors is necessary.
In this chapter, test results are not only based on the untouched initial circles,

but also ones with randomly added errors to the coordinates of the circle center and
radius, whereas the parameter settings stay unchanged to evaluate the stability of
algorithms.

Initial circles are arti�cially distorted with additive errors to test the stability of
these methods, which are solely optimized for the initial circles without errors. Now
the test data has three groups, as shown in Table 4.1.

Table 4.1: Errors Added to the Initial Circles

No Errors Test data is untouched and contain no errors

Light Errors
max. 10% and 5% to the length of radius and coordinates of
circle center respectively; Random errors are uniformly added

Heavy Errors
max. 15% and 10% to the length of radius and coordinates of
circle center respectively; Random errors are uniformly added

Data sets with errors are tested three times repeatedly and the results are calcu-
lated from their average to reduce the in�uence of randomness. If not speci�ed, the
results are presented using the data without arti�cial errors.

Single-cell images are resized to 200×200 pixels. Smoothness weight λ in L0

Smoothing is set to 0.02 as default. Number of segments and compactness of SLIC
Superpixel are set to 100 and 10 respectively. The detailed parameters of Watershed
and Snakes can be found in Section 3.3.2.

4.2 Results

Now turning to some examples of re�ned contours compared to initial circles and
ground truth contours. First of all, several well re�ned examples are shown in Figure
4.2. In this case, all four chains of methods obtain desired results.
Sometimes, the re�ned contours using Snakes are more accurate than Watershed.

However, it is possible that Snakes might fail. Figures 4.3 and 4.4 show some
examples respectively.
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0.934, SPSnakes 0.942, L0Snakes 0.931, SPWS 0.959, L0WS

(a) Example 1

0.948, SPSnakes 0.955, L0Snakes 0.932, SPWS 0.925, L0WS

(b) Example 2

0.929, SPSnakes 0.948, L0Snakes 0.941, SPWS 0.956, L0WS

(c) Example 3

0.954, SPSnakes 0.965, L0Snakes 0.947, SPWS 0.962, L0WS

(d) Example 4

0.95, SPSnakes 0.959, L0Snakes 0.949, SPWS 0.966, L0WS

(e) Example 5

0.974, SPSnakes 0.97, L0Snakes 0.962, SPWS 0.975, L0WS

(f) Example 6

Figure 4.2: Re�ned Contour Examples - A

Red contours are ground truth contours; yellow ones are initial circles;

green ones are re�ned contours. Dice-Index and methods are shown in

the title.
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0.946, SPSnakes 0.943, L0Snakes 0.906, SPWS 0.907, L0WS

(a) Example 1

0.927, SPSnakes 0.922, L0Snakes 0.894, SPWS 0.907, L0WS

(b) Example 2

0.828, SPSnakes 0.885, L0Snakes 0.776, SPWS 0.776, L0WS

(c) Example 3

Figure 4.3: Re�ned Contour Examples - B. Snakes work better than Watersheds.

0.756, SPSnakes 0.845, L0Snakes 0.936, SPWS 0.949, L0WS

(a) Example 1

0.885, SPSnakes 0.795, L0Snakes 0.932, SPWS 0.934, L0WS

(b) Example 2

0.897, SPSnakes 0.802, L0Snakes 0.933, SPWS 0.925, L0WS

(c) Example 3

Figure 4.4: Re�ned Contour Examples - C. Watersheds work better than Snakes.
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Some statistical indices are worth investigating to understand the quality of the
results and to compare di�erent methods quantitatively. The most direct way to
evaluate the quality of segmentation is to calculate the Dice-Index. The average,
median and variance of each method are shown in Tables 4.2-4.4. The best results
in a series of experiments are highlighted in bold.

It is shown that the average and median of Dice-Index are improved to above 0.9
in the cases of lower errors. Generally speaking,Watershed brings better results than
Snakes and L0 brings better results than Superpixel. If the initial circles contain
heavy errors, the quality of re�nement is not as good as in the other two cases, but
the average and median of Dice-Index are still improved by approximately 2%. The
variances are decreased in all three cases compared to initial circles and the method
using Superpixel as preprocessing and Watershed as segmentation brings the most
centralized Dice-Indices.

Table 4.2: Average of Dice-Index to Ground Truth

SPSnakes L0Snakes SPWS L0WS Initial Circle

No Errors 0.912 0.917 0.923 0.927 0.896
Light Errors 0.900 0.906 0.908 0.912 0.883
Heavy Errors 0.877 0.885 0.878 0.883 0.860

Table 4.3: Median of Dice-Index to Ground Truth

SPSnakes L0Snakes SPWS L0WS Initial Circle

No Errors 0.923 0.929 0.936 0.940 0.909
Light Errors 0.909 0.917 0.918 0.922 0.894
Heavy Errors 0.885 0.896 0.884 0.890 0.870

Table 4.4: Variance of Dice-Index to Ground Truth (×10−3)

SPSnakes L0Snakes SPWS L0WS Initial Circle

No Errors 1.867 1.991 1.825 1.876 2.441
Light Errors 2.436 2.609 2.008 2.050 3.430
Heavy Errors 3.004 3.322 2.304 2.354 3.534

Since the goal of this thesis is to re�ne the contours on the basis of given initial
circles, it is vital to compare the Dice-Indices of initial circles and re�ned contours.
Table 4.5 shows the proportion of improved cells in comparison to the initial circle
in percent. In the best case, 95.8% of cells are better segmented compared to the
initial circles. More than 70% of cells are better segmented, even in the case of
heavy errors.
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Table 4.5: Percent of Cells with Improved Dice-Index

SPSnakes L0Snakes SPWS L0WS

No Errors 76.422% 82.452% 94.284% 95.800%

Light Errors 73.821% 78.680% 79.508% 80.595%

Heavy Errors 73.907% 78.280% 68.705% 73.107%

Turning now to cumulative and violin plots of Dice-Indices to compare these
methods visually (see Figure 4.5).
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(d) Violin -Light Errors
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(e) Cumulative - Heavy Errors
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Figure 4.5: Dice-Index - Cumulative Plots and Violin Plots with Quartiles
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The X-axes of cumulative plots are Dice-Indices. The Y-axes represent the nor-
malized cumulative proportion. The areas of curves corresponding to initial circles
are �lled to have a direct comparison. It is clear that each curve lies in the �lled
region, which means the re�ned contours are more similar to the ground truth gen-
erally. In the case of no errors, each curve starts rising around 0.9. However, with
increasing errors, all curves are shifted to left.
Violin plots are other informative graphs to visualize the distribution of data.

Normalized Dice-Index distributions are presented in violin plots in Figure 4.5. The
width of each violin represents the normalized number of cells with same Dice-Index.
The inner lines are quartiles. The shape of violins represents the distribution of Dice-
Indices, such that the quality of results can be visually recognized. It can be seen
that all quartile lines are higher for re�ned contours than for initial circles. However,
with increasing errors, the Dice-Indices are dispersed to lower values.

Last but not least, the e�ciency plays a signi�cant role to put a theoretical meth-
odology into the real world. Table 4.6 shows the average processing time per cell
using di�erent methods. The e�ciency of Watershed is better than Snakes and the
e�ciency of Superpixel is slightly better than L0.

Table 4.6: Time of Processing per Cell

SPSnakes L0Snakes SPWS L0WS
405.59ms 463.53ms 82.61ms 241.99ms

Test environment: OS - Ubuntu 18.04.1 LTS; Processor - Intel Core i3-8100 CPU

@3.60GHzÖ4; Graphics Card - Nvidia GeForce GTX1060 3GB

4.3 Evaluation

At the �rst stage, some criteria of evaluation are presented. If the Dice-Index is
greater than 0.9, this segmentation is regarded as well-segmented. If the re�ned
segmentation is not well-segmented, but the critical part of adjacent cells is not
included, it is regarded as acceptable. For instance, some part of background or
cytoplasm is inside of the contour, but the nucleus of the adjacent cell is outside. It
is reasonable to make this compromise, which alters characteristics of cells negligibly.
Within the frame of these criteria, the Dice-Indices, which are not better than that
of initial circles, are shown in Figure 4.6.
Following this, the results presented in the previous section are interpreted globally

and from the view of single cells.

4.3.1 Macro Level

The re�ned contours are more similar to the ground truth. This conclusion can be
drawn from several aspects. The curves of cumulative plots are on the right side of
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Figure 4.6: Dice-Index: Density Distribution - Worse than Initial

initial ones, which means the numbers of well-segmented cells are larger. In violin
plots, all re�ned quartile lines are higher than the initial ones.

Average and median of Dice-Indices from di�erent methods using di�erent data-
sets present decent results. The values are around 0.9, which are regarded as well-
segmented, as previously introduced. The variances have also been improved. It
means these methods are suitable for the vast majority.

It is notable in Figure 4.6 that in spite of the contours being not re�ned compared
to initial circles, the Dice-Indices are still located mostly in the region where they
are regarded as well-segmented, especially for Watershed.

Comparing results from di�erent dataset groups, it is known that the re�ned
contours are always better than initial ones regardless of errors. However, the Dice-
Indices depend on the added errors: the more errors initial circles contain, the worse
re�ned results are. It is not surprising for Watershed or Snakes : with di�erent sizes
and positions of initial circles inWatershed, the prede�ned seeds are correspondingly
changed. It may cause oversized or undersized seeds, such that the �nal contours
may stop out of the cells or on the edges between nucleus and cytoplasm. The main
limitation of Snakes is that the initial contour should be near the ground truth.
Therefore, a large deviation of positions to ground truth may lead to unstable res-
ults. Table 4.4 shows that the more errors an initial circle contains, the less stable
the result of Snakes is. The reason is that in some cases Snakes may result in a
semicircle-like shaped �nal contour even if the ground truth is quasi circular (see
Figure 4.4 b). The phenomenon that the processing using Snakes fails is further
discussed in the next section.

To conclude, most cells are better segmented compared to the initial circles. For
those re�ned contours, which are even less accurate than the initial ones, have great
majority of Dice-Indices in the range [0.8,1.0] for Snakes or [0.9,1.0] for Watershed.
Similar re�nement can be also obtained for initial circles with errors, but the results
become worse with increasing errors.
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4.3.2 Micro Level

Evaluation in macro level gives a global point of view, whereas it lacks comparison
for the same single-cell image using di�erent methods. As the di�erences between
preprocessing methods are not salient, only the segmentation methods are evaluated.

As shown in Figure 4.2, all four chains of methods obtain desired results. That
means, Dice-Indices are greater than 0.9, in this case even around 0.95, and the
contours are reasonable. It can be seen in 4.2 (b) that in spite of the irregular shape
of this cell, it has still been perfectly segmented, as four adjacent cells are excluded.

Globally speaking, Watershed brings in better statistics. After turning to the
single-cell examples, the drawbacks of this method are also clear: it works unqual-
i�edly for irregular cells. As shown in Figure 4.3, some parts of contours are not
accurate. Figure 4.3 (c) shows that the contour of the cell below is not correctly
recognized. The reason is that the seed is too large for this cell, such that a part
of adjacent nucleus is also considered as minimum. On the contrary, if the size of a
seed is too small, it tends to stop at the edge between nucleus and cytoplasm. To
pursue a global bene�t, this compromise is made. Despite the better global results
in this segmentation, it can cause a severe consequence for following classi�cation
step, as the features of some cells are signi�cantly changed, such as shapes and in-
tensity distribution inside of cells.

Compared to Watershed, Snakes can �nd contours in a more reasonable way. It
is rare that the edges of adjacent cells are segmented inside of re�ned contours.
However, the global statistical results of Snakes are worse than Watershed. The
reason is that the parameters are set to avoid contours being stuck in dark regions.
As shown in Figure 4.4 (a,b), contours are repelled from dark parts. Besides, the
smoothness weight for Snakes is set to 0, such that irregular shaped cells can also
be well-segmented. Some positive examples are presented in Figure 4.2 (b,e) and
4.3 (a,c). Table 4.6 shows that Watershed is, not surprisingly, more e�cient than
Snakes, as a optimization problem is to solve in Snakes.
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5 Discussion

A quick summary of this thesis is recapitulated in this chapter. Following that,
conclusions are drawn, which cover comparison of advantages and disadvantages. At
the end of the chapter, possible future works related to this thesis are mentioned.

5.1 Summary

As stated in the introduction, the objective of this thesis is to re�ne the leukocyte
contour on the basis of given initial circle. In the initial stage of the process, single-
cell images and ground truth contours are extracted from the whole scans of stained
bone marrow. A set of preprocessing procedures is applied to these. At this point,
the preprocessed single-cell images are normalized and ready to be segmented. Using
the initial circles, which are extracted from ground truth contours and optionally
added arti�cial errors, segmentation techniques are applied to the single-cell images.
As soon as these steps have been carried out, the segmented contours are compared
to the ground truth to evaluate the quality of this process.
According to the results presented in the previous chapter, this chain of methods

has achieved the goal of this task. Based on the results of segmentation, the e�-
ciency of leukocyte counting and classi�cation should be improved, compared to the
manual operation. It is automatic, because there is no manual interference during
the processing.
Nevertheless, it has a number of drawbacks. First of all, the parameters of di�erent

methods must be adapted to the speci�c data sets through experimental analysis.
That means, the settings of this processing pipeline are not automatically generated.
The stability of this chain of methods is not completely perfect. If the initial circles
contain heavy errors, the re�ned Dice-Indices are still better than initial ones, but
they do not remain in the level as with no errors. Moreover, it takes approximately
half a second for the step of segmentation per cell. The e�ciency needs further
improvement, as the number of leukocytes is enormous. The average number of
counted cells is 16609 in a bone marrow biopsy [26]. Roughly estimated, it might
take hours for such a test.

5.2 Outlook

Machine learning, or more speci�cally deep learning, is becoming a routine technique
for image processing. It is also promising for this task. One of the advantages of
deep learning is the accurate extraction of useful features, which is in this case the
drawback of classical methodologies. However, deep learning techniques require a
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large amount of data as inputs to make a precise decision. Furthermore, it might
be unclear what is learned while training.
In this thesis, the results of classical segmentation techniques can serve as baseline

of further deep learning techniques. With amassed knowledge from classical meth-
odologies, the selection of data to be trained should be more reasonable. After
that, the results of counting and classi�cation for leukocytes with classical and deep
learning techniques can be compared to show concrete di�erences between them.
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A Appendix

A.1 Pseudo Code of Immersion Watershed

Algorithm

# LABEL = label of pixel_x

# NEIGHBOR = label of pixel_x’s neighbors

if LABEL > 0: # pixel_x is visited

L1:

label each pixel in Geodesic Influence Zone of pixel_x with LABEL;

elif LABEL <= 0: # pixel_x is not visited yet

if all NEIGHBOR <= 0:

label this pixel with new label; # pixel_x is a new minimum

GOTO L1;

elif at least one NEIGHBOR > 0:

if number of labels of all NEIGHBOR == 1:

label pixel_x with NEIGHBOR;

GOTO L1;

elif number of labels of all NEIGHBOR >1:

label pixel_x as watershed;

Listing A.1: Pseudo code of Immersion Algorithm
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