
Instance Segmentation
of Dense Objects

via Deep Pixel Embedding

Master Thesis

presented by

Yuli Wu

Supervisor:
Long Chen, M.Sc.

Institute of Imaging & Computer Vision
Prof. Dr.-Ing. Dorit Merhof
RWTH Aachen University

Erklärung nach §19 Abs. 7 DPO 2004

Hiermit versichere ich, dass ich die vorgelegte Master Thesis selbständig angefertigt
habe. Es sind keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
worden. Zitate wurden kenntlich gemacht.

I hereby confirm that I have written this master thesis independently using no
sources or aids other than those indicated. I have appropriately declared all citations.

Aachen, 20.06.2020

Contents

List of Figures VII

List of Tables VIII

List of Listings VIII

Nomenclature IX

1 Introduction 1

2 Related Work 5
2.1 Convolutional Neural Networks . 5

2.1.1 U-Net . 6
2.1.2 Hourglass . 6
2.1.3 ResNet + FPN . 7

2.2 Loss Functions . 8
2.2.1 Metrics of Distance . 8
2.2.2 Cartesian Form of Embedding Loss 9
2.2.3 Polar Form of Embedding Loss 10
2.2.4 Circle Loss . 10

2.3 Clustering Techniques . 14
2.3.1 Radial and Angular Clustering 14
2.3.2 Mean Shift . 15
2.3.3 Density Based Clustering . 17
2.3.4 Mutex Watershed . 18

2.4 State of the Art . 19
2.4.1 Instance-First Approaches . 19
2.4.2 One-Stage Approaches . 21
2.4.3 Deep Embedding Learning Approaches 21
2.4.4 Other Approaches on Leaf Segmentation 22

2.5 Other Techniques . 23

3 Method 27
3.1 Processing Pipeline . 28
3.2 Cosine Embedding Loss with Local Constraints 29
3.3 Feature Concatenative Layer . 30
3.4 From U-Net to W-Net . 31

V

4 Experiments 33
4.1 Datasets . 33

4.1.1 CVPPP Leaf Segmentation 34
4.1.2 BBBC006: U2OS Cells . 34
4.1.3 Cityscapes . 35

4.2 Ablation Experiments . 36
4.2.1 Cartesian vs. Polar Embedding 36
4.2.2 Local vs. Global Constraints 38
4.2.3 U-Net vs. W-Net . 41
4.2.4 Concatenative Layer . 45
4.2.5 Loss Weights as Hyper-Parameters 47
4.2.6 Adaptive vs. Constant Loss Weights 49
4.2.7 Dimension of Embeddings . 53
4.2.8 Loss for Distance Regression 55
4.2.9 Clustering . 56

4.3 Comparison against State-of-the-Art 57
4.4 Application on Human U2OS Cells 58

4.4.1 Results . 58
4.5 Application on Cityscapes . 60

4.5.1 Augmentation . 60
4.5.2 Visual Results . 61

5 Evaluation 65
5.1 Weaknesses . 65

5.1.1 Demanding Training Images 66
5.1.2 Scale Inflexibility . 67
5.1.3 A Detour for Accuracy . 67
5.1.4 Application Constraints . 68

5.2 Rethinking Similarity Loss Pair . 68

6 Final Remarks 71
6.1 Conclusions . 71

6.1.1 Concatenative Layer . 72
6.1.2 Pixel Embedding Learning . 72

6.2 Outlooks . 73
6.2.1 End-to-End Multi-class Instance Segmentation 73
6.2.2 Similarity Loss Pair . 73

Bibliography i

A Network Architectures ix

B Extension: Ensemble Trick xi

C Online Access xiii

VI

List of Figures

1.1 Structure of this Thesis . 2

2.1 U-Net . 6
2.2 Stacked Hourglass . 7
2.3 Feature Pyramid Networks . 7
2.4 Optimization of Similarity Pair with Adaptive Weights 11
2.5 Toy Function y = x+ log(e−x + e−a) 13
2.6 Adaptive Weighting Factors of Circle Loss 14
2.7 Radial and Angular Clustering . 15
2.8 Mask R-CNN . 20
2.9 Hourglass with Cosine Embeddings 22
2.10 Example of Distance Transform . 23
2.11 Activation Functions . 24

3.1 Ambiguity between Leaf Boundary and Leaf Midvein 27
3.2 Processing Pipeline . 28
3.3 Learned Embeddings with U-Net and W-Net 30
3.4 Hybrid Network Architectures of U-Net and W-Net 31

4.1 Examples of Leaf Segmentation . 34
4.2 An Example of BBBC006: U2OS Cells 35
4.3 An Example of Cityscapes . 36
4.4 Examples of Euclidean Embeddings with Global Constraints 37
4.5 Joint Block between Backbone and Loss 38
4.6 Learned Embeddings of Different Constraints and Embedding Dimen-

sions . 40
4.7 U-Net and Variants: Simplified . 42
4.8 Leaf Segmentation Results of the CVPPP2017 Testing Set 44
4.9 Distmap as Concatenative Layer . 45
4.10 Results of Different Loss Weights . 48
4.11 Learned Embeddings with Different Weight 49
4.12 Comparison of Constant Loss Weights 50
4.13 An Example of K(ω) . 51
4.14 Comparison of Adaptive Weights . 52
4.15 Comparison of Adaptive Weights . 53
4.16 Results of Different Embedding Dimensions 54
4.17 Loss Comparison for Distance Regression 55
4.18 Cell Segmentation Results of the BBBC006v1 Data 59
4.19 Augmentation for Cityscapes . 60

VII

4.20 Citycapes Results Part 1 . 62
4.21 Citycapes Results Part 2 . 63

5.1 Failed Cases . 66
5.2 Expected Processing Pipeline towards Panoptic 67
5.3 Dilemma of Embeddings . 68

6.1 Outlook of Embeddings . 72

A.1 Original U-Net. 2.1 revisited. ix
A.2 U-Net with 2 Heads. ix
A.3 Stacked U-Net (W-Net). x
A.4 Stacked U-Net (W-Net) with Intermediate Supervision. x

B.1 Leaf Segmentation Results of the CVPPP2017 Testing Set A3 xii

List of Tables

2.1 Comparison of Deep Embedding Learning Methods 21

4.1 Roles of 3 Datasets in this Thesis . 33
4.2 Four Formats of Loss Functions. 39
4.3 Comparison of U-Net Variants . 43
4.4 Comparison of Different Types of Concatenative Layers 47
4.5 Results of Adaptive and Constant Loss Weights 52
4.6 Comparison of Local/Global Constraints, Network and Clustering . . 57
4.7 Comparison against State-of-the-Art 58

5.1 Results of Testing Sets . 65

List of Listings

2.1 Pseudocode of DBSCAN Algorithm 16
2.2 Pseudocode of Mutex Watershed . 18

VIII

Nomenclature

F(x) tensor as network output
x tensor as network input
Gn(x) tensor as output of n-th layer
[x1,x2] concatenation of two tensors

Deuc Euclidean distance
Dcos cosine distance
Dang angular distance
Seuc Euclidean similarity
Scos cosine similarity

e embedding vector
||e||22 L2 norm of vector e
eT transposed vector
[a]+ max{a, 0}

Lemb loss function of embedding
Lintra between-instance loss term
Linter within-instance loss term

C number of instances
cA object with label A
µc centroid embedding of object c
δ,∆ margin
Ec number of pixels in object c
Nc set of neighboring objects of object c
|Nc| number of neighboring objects of object c

λ weighting factor before Lintra
γ scale factor
α adaptive weighting factor
L̂ loss value as a constant
K(ω) adaptive weighting factor as a function

IX

1 Introduction

Instance segmentation aims to label each individual object, which is critical to many
biological and medical applications, such as plant phenotyping and cell quantific-
ation, and also to many industrial applications and even daily life, such as the
vision-based self-driving algorithm.

Before entering the technical parts, the importance of the mentioned fields is intro-
duced. Plant phenotyping is an emerging science about the identification of effects
on plant structure and function (the phenotype), that links genomics with plant
ecophysiology and agronomy [1]. It can provide essential information on how differ-
ences in genetic code, environmental conditions which a plant has been exposed to,
and crop management can guide selection toward productive plants suitable for their
environment to ensure, for example, global food security. [2, 3] The most primarily
used dataset in this thesis is the Computer Vision Problems in Plant Phenotyp-
ing (CVPPP) Leaf Segmentation Challenge (LSC) of the latest version in 2017 [4],
which contains the images of Arabidopsis and Tobacco. Arabidopsis is considered as
a first class model organism and the single most important species for fundamental
research in plant molecular genetics [5]. Moreover, many discoveries with direct
relevance to human health and disease have been elaborated using Arabidopsis [6].
The proposed method has also been tested on the image set BBBC006v1 of human
U2OS cells from the Broad Bioimage Benchmark Collection [7]. The human osteo-
sarcoma (bone cancer) U2OS cell line is one of the first generated cell lines and is
used in various areas of biomedical research [8]. Last but not least, the widely used
semantic understanding of urban street scenes dataset Cityscapes [9] has also been
tested in this work, which shows the promising application on the towards real-world
scenarios. This thesis is not only inspired by the trending area of computer vision
and machine learning (particularly deep learning), but also motivated by the desir-
able techniques in the biomedical research and even daily life.

Learning object-aware pixel embeddings is one of the trends in the field of instance
segmentation. The embedding is essentially a high-dimensional representation of
each pixel. To achieve instance segmentation, pixel embeddings of the same object
should be located relatively close in the learned embedding space, while those of
different objects should be discriminable. The loss usually consists of two terms:
the between-instance loss term Linter and the within-instance loss term Lintra. The
former term Linter encourages different-instance embeddings to be located far away
from each other, while the latter term Lintra encourages same-instance embeddings
to stay together. Two most popular metrics used to describe the similarities of em-
beddings are Euclidean distance and cosine distance. Although the pixel embedding

1

1 Introduction

Figure 1.1: Structure of this Thesis.
Chapter 2 - Chapter 4 are illustrated as orange, green and blue, respect-
ively. Connecting lines denote the inspiration or corroboration.

approaches have gained success in many datasets including CVPPP Leaf Segment-
ation Challenge [10–13], the trained embedding space is far from optimal.

The idea was indirectly inspired by the “easy task first” concept behind curriculum
learning [14]. Distance regression predicts the distance from a pixel to the object
boundary and is used in [10, 15], for example, as an auxiliary module. Empirically,
it is found that the distance regression module is relatively easy to train on many
datasets. Considering that the learned features by the distance regression module
should be already recognizable for distinguishing instances, the embedding module
is prefixed with a distance regression module to promote the embedding learning
process.

This thesis is structured as follows. Chapter 2 covers the related work in the field
of instance segmentation, including the state-of-the-art algorithms using instance-
first strategy and one-stage approaches. In particular, the methods based on the
pixel embedding learning are introduced and compared. Following that, the pro-
posed method is demonstrated in Chapter 3, which results in the best performance
throughout the ablation experiments. Next, the detailed ablation experiments are

2

introduced in Chapter 4, covering the network architectures, the loss formats and
the clustering techniques. Based on the experimental results, some questions are
raised in Chapter 5, which are worth further research in the future. At last, the con-
clusions are summarized and discussed in Chapter 6. Figure 1.1 gives an overview
of the structure in this thesis.

The main contributions of this thesis are summarized as follows:

1. A novel architecture has been proposed to promote the pixel embedding learn-
ing by utilizing features learned from the distance regression module, which
significantly improves the performance in the CVPPP Leaf Segmentation Chal-
lenge [4]. Our overall mean Symmetric Best Dice (mSBD) score is at the top
position of the leaderboard with 0.879 by thesis submission. Furthermore,
the average of mSBD scores on Arabidopsis images (testing sets A1, A2, A4)
outperforms the second best results from three different teams by over 3%,
namely from 0.883 to 0.917;

2. A number of ablation experiments have been conducted in terms of the stacked
U-Net architecture, different types of concatenative layers and varied loss
formats, to validate our architecture and also supplement some experimental
vacancies in this field;

3. The proposed method has also been tested on Cell Segmentation and City-
scapes and the improved capability has been confirmed;

4. Problems of similarity loss pair have been raised and the promising future
work is itemized.

3

2 Related Work

In addition to Mask R-CNN, one of the paradigms of instance segmentation al-
gorithms, a considerable number of approaches are made, especially those via deep
embedding learning. The fundamental components in the deep embedding learning
pipeline are as follows: a convolutional neural network, served as feature extractor
which map pixels from original images to multi-dimensional vectors into embedding
domain, a loss function, served as objective function in the optimization problem
with the learned features from the convolutional neural network being the input
elements, and a clustering block, served as post-processing which transforms em-
beddings to labels.

With this in mind, the convolutional neural network architectures, loss functions
and clustering techniques are introduced in Sections 2.1 - 2.3. Chosen state-of-
the-art algorithms are demonstrated and preliminarily compared in Section 2.4,
which covers three categories: instance-first approaches, one-stage approaches and
deep embedding learning approaches. The grouping is not meant to be mutually
exclusive, but to involve the most appealing trends, including those from CVPR
2020. Following that, other algorithms and techniques, which are relevant in the
experiments, are introduced to fill the gap of following chapters in Section 2.5.

2.1 Convolutional Neural Networks

It is hardly possible in the recent years to talk about image processing and computer
vision without mentioning convolutional neural networks (CNN). No exception that
the CNN is used in this thesis as a feature extractor. Three popular models are
introduced, which share one same characteristic: they exploit the multiple scales
of feature maps. The combination of multi-scales and deep layers tend to be the
must-have characters of modern architectures.

The chosen network architecture used in the experiments as backbone under the
coverage of this thesis is U-Net due to its fundamental yet sufficient components.
The more novel architectures may be advantageous, but it is out of the scope of
this thesis. Despite that, the differences of few popular networks are worth being
briefly introduced to indicate how the final modified U-Net is inspired. Future work
containing the comparison of different backbone architectures in the field of instance
segmentation via deep embedding learning are promising and expected.

5

2 Related Work

Figure 2.1: U-Net Architecture

2.1.1 U-Net

Focused on the biomedical images, U-Net [16] has established the foundations and
principles of upcoming CNNs. The two salient characteristics of U-Net are as follows,
which can be noticed in Figure 2.1:

• Symmetric down-sampling and up-sampling exploit different levels context
density of feature maps: the lower, the more dense contexts are;

• Skip connections fuse information from different abstract levels: the later, the
more abstract feature maps are.

[17] has proposed a modified and more complicated architecture: U-Net++, where
more connections between low and high blocks are designed. [18] represented a novel
dense connectivity, termed dense block, which shares the same idea of the usage of
concatenation. Thanks to the densely connected architecture, the supervision of the
loss function is more direct and thus more effective than the previously proposed
networks. And the collective knowledges are more effectively shared. Because it
exploits concatenation as skip connection, which is the case of U-Net, it is introduced
in this section. Meanwhile, the complete network, termed DenseNet, is usually
regarded to as a variant of ResNet, which is introduced in Section 2.1.3.

2.1.2 Hourglass

[19] proposed an hourglass architecture originally for human pose estimation, where
the vanilla networks are stacked to each other to improve the performance as illus-
trated in Figure 2.2. It is noticeable that in [19] the effectiveness of Intermediate Su-
pervision has been demonstrated. The performance is improved, if the feature maps
between the stacked networks are also added by loss functions, which is termed
as Intermediate Supervision. Stacked networks extend the potential of arbitrary
architectures further, as it shows the possibility of improvement by stacking and

6

2.1 Convolutional Neural Networks

Figure 2.2: Stacked Hourglass Architecture. Adapted from [19].

intermediately supervising the original architectures. In contrast, the saturation of
the redundant stacked networks and the trade-off between overhead for computation
and memory and the relative improvement is worth being investigated.

2.1.3 ResNet + FPN

Before [20], the very deep networks (more than 100 layers) usually suffered from
inefficiency. Thanks to the novel skip connections, the trade-off of depth of network
and efficiency has been mitigated.

As mentioned previously, the DenseNet is considered as a variant of ResNet. The
major difference is the type of skip connection, where the dense concatenation is
used in DenseNet and addition in ResNet. As a result, the output of a Dense Block
is defined as F(x) = Gn([Gn−1(x), Gn−2(x), ..., x]), while the output of a ResNet
Block is defined as F(x) = Gn(x) +x, where F(x) denotes the output of block with
the input x, G(x) denotes the output of previous layer in this block, and [.. , ..]
denotes the concatenation operation. Other variants of ResNet are, for instance,
ResNeXt [21] and ResNeSt [22].

(a) FPN (b) Lateral Connection

Figure 2.3: Feature Pyramid Networks.
(b): Lateral connection between the top-down pathway and skip connec-
tion, merged by addition.
Adapted from [23]

ResNet is a deep yet serial-shaped architecture, which lacks the ability of multi-
scaling. Thus the combination of ResNet and Feature Pyramid Networks (FPN) [23]

7

2 Related Work

becomes the new trend in the field of object detection, such as in Fast R-CNN and
its successors. As the name implies, the pyramid shape is the main characteristic
to extract features of multi-scales. The lateral connection collects information from
high-resolution (output of 1x1 conv) and high-context (output of 2x up) via addi-
tion, as illustrated in Figure 2.3. Notice that the upsampling is used to hallucinate
high-resolution features, which is the same as U-Net. Yet the additive connection is
different from the concatenation used in U-Net.

2.2 Loss Functions

In this section, a set of loss functions are introduced. The construction of loss func-
tions plays a critical role in deep learning, as they connect the learned features from
the outputs of deep learning network with the final evaluation metrics, and thus
they determine, in which manner the target problem should be optimized.

In the field of instance segmentation via embedding learning, one of the most
intuitive formats of building loss functions is the joint loss consisting of two terms:
the between-instance loss and the within-instance loss. In this thesis, they are also
depicted as inter loss (Linter) and intra loss (Lintra). Since the losses are depicted
through the similarity pair, between-instance similarity (sn) and the within-instance
similarity (sp), these two terms are also used in this thesis to describe the non-
weighted versions. With context it is clear that the optima of Linter and Lintra are
0, and of sn and sp are 0 and 1 respectively.

The metrics of distance, Euclidean Distance and Cosine Distance, are introduced
in Section 2.2.1. Based on that, the chosen embedding loss functions are categorized
into two types: Cartesian Form and Polar Form, presented from [11] and [10] re-
spectively. In Section 2.2.4, Circle Loss is introduced together with its degenerated
variants AM-Softmax and Triplet Loss, where Circle Loss provides a novel flexible
optimization manner of similarity pair.

2.2.1 Metrics of Distance

To describe the similarity and distance (namely dissimilarity) of two embeddings,
two metrics are demonstrated: Euclidean Distance (or referred to as L2 Norm Dis-
tance), and Cosine Distance. The criterion of these metrics of distance is that their
measures should be non-negative and the larger the measures are, the more distinct
the two embeddings should be.

They are defined as below:

Euclidean Distance

Deuc(e1, e2) = 1− Seuc(e1, e2) = ‖e1 − e2‖22 (2.1)

8

2.2 Loss Functions

Cosine Distance

Dcos(e1, e2) = 1− Scos(e1, e2) = 1− e1
T · e2

‖e1‖22 · ‖e2‖22
(2.2)

One salient difference between these two formats is, that the measures of Euc-
lidean Distance can be arbitrarily large, whereas the measures of Cosine Distance
are ranged between 0 and 1. Speaking of Cosine Distance, the measures are 1 if the
two embeddings are orthogonal, or 0 if the two embeddings are identical. And vice
versa when speaking of Cosine Similarity (denoted as Scos).

One thing worth mentioning is that the Cosine Distance violates the triangle
inequality. One counterexample can be easily found: Let a = [1, 0], b = [1√

2
, 1√

2
], c =

[0, 1]. It results in Dcos(a, c) = 1, Dcos(a, b) = Dcos(b, c) = 1 − 1√
2
, which educes

Dcos(a, c) > Dcos(a, b) + Dcos(b, c) ≈ 0.6. The property of triangle inequality can
be repaired by a modified definition of Angular Distance:

Dang(e1, e2) =
arccos(Scos(e1, e2))

π
, (2.3)

which is also bounded between 0 and 1.

Based on the different description of distance, corresponding embedding loss func-
tions can be defined in two forms, which are introduced in the following two sections.

2.2.2 Cartesian Form of Embedding Loss

The Cartesian Form of Embedding Loss uses the Euclidean distance. Equation 2.4
showcases one example proposed in [11], where the distances with margins are
squared.

Lemb = Linter + Lintra

Linter =
1

C(C − 1)

C∑
cA=1

C∑
cB=1

cA 6=cB

[
Deuc(µcA , µcB)− 2δ1

]2
+

Lintra =
1

C

C∑
c=1

1

Ec

Ec∑
i=1

[
δ2 −Deuc(ei , µc)

]2
+
,

(2.4)

where C denotes the number of instances; cA, cB denote labels; µcA ,µcB ,µc denote
centers of embedding clusters labeled with cA, cB, c which are calculated as mean
embeddings; ei denotes the i-th embedding in the respective cluster c with totally
Ec embeddings; δ1, δ2 denote margins; the operator [··]+ denotes clip-by-0 if negative
values are given. An illustration can be found in Figure 2.7(a) together with the
radial clustering technique.

9

2 Related Work

2.2.3 Polar Form of Embedding Loss

Analogue to Cartesian Form, Polar Form of Embedding Loss is defined as follows:

Lemb = Linter + Lintra

Linter =
1

C

C∑
cA=1

1

|NcA|
∑

cB∈NcA

[
1−Dcos(µcA , µcB)

]

Lintra =
1

C

C∑
c=1

1

Ec

Ec∑
i=1

[
Dcos(ei , µc)

]
,

(2.5)

where |NcA| denotes the number of instances which are adjacent to instance labeled
with cA. Other notations can be referred to after Equation 2.4. This form is origin-
ally proposed in [10].

According to Four Color Theorem [25], only 4 labels are needed to segment adja-
cent objects sufficiently. Inspired by this, it would simplify the instance segmentation
process by only considering the neighborhoods of target instance. Apart from the
metrics of distance, the local constraint is another and salient distinction to [11].
Furthermore, the distance is not squared in contrast with the previously introduced
Cartesian Form. In the original paper [10], no margins are added in the loss func-
tions, which is also one difference to Cartesian Form. An illustration can be found
in Figure 2.7(b) together with the angular clustering technique.

2.2.4 Circle Loss

It is challenging to optimize the between-instance loss and the within-instance loss
simultaneously and stepwise equivalently, if they are additively jointed. In the field
of semantic segmentation and facial recognition, [26] proposed a novel loss, which
combines the similarity pair together with adaptive weights to avoid the extreme
case that the optimization process is stuck as one term has reached its optimum, as
illustrated in Figure 2.4. In this work, cosine similarity is used. In Section 2.2.4,
the between-instance similarity is denoted as sn and the within-instance similarity
is denoted as sp, indicating that their optima should be 0 (n for negative) or 1 (p
for positive) respectively.

The Circle Loss is defined as:

Lcircle = log
[

1 +
L∑
j=1

exp(γαjn(sjn −∆n))
K∑
i=1

exp(−γαip(sip −∆p))
]
, (2.6)

where L,K denote the number of the between-instance and the within-instance sim-
ilarity pairs, γ denotes scale factor, α denotes adaptive weighting factor, ∆ denotes
margin.

10

2.2 Loss Functions

(a) Vanilla Approach (b) Circle Loss Approach

Figure 2.4: Optimization of Similarity Pair with Adaptive Weights.
(a): Combine similarity pair through (sn − sp);
(b): Combine similarity pairs with adaptive weights (αnsn − αpsp).
Take point A as an example: if sn is much closer to its optimum (0) than
sp to its (1), using adaptive weights can avoid optimization process being
stuck in the left boundary. In this example, the adaptive weights should
be small for sn and large for sp respectively. As a result, the target T is
more preferable than T ′.
Adapted from [26].

The Circle Loss provides a unified perspective for learning with class-level labels
and with pair-wise labels. Two representative loss functions which can be obtained
with slight modifications are demonstrated: AM-Softmax Loss [27] for class-level
labels and Triplet Loss [28] for pair-wise labels.

AM-Softmax Loss: First the adaptive weighting factors are neglected αn =
αp = 1. Then the two margins are simplified as one additive margin ∆am = ∆p−∆n,
being added only to the between-class similarity pairs. Finally by setting the number
of within-class similarity pairs K to 1, the AM-Softmax Loss [27] can be degenerated
from Equation 2.6 as below:

LAM−Softmax = log
[
1 +

L−1∑
j=1

exp(γ(sjn + ∆am))exp(−γsp)
]

= log
[

1 +

∑L−1
j=1 exp(γsjn)

exp(γ(sp −∆am))

]
=− log

[exp(γ(sp −∆am))

exp(γ(sp −∆am)) +
∑L−1

j=1 exp(γsjn)

]
(2.7)

Triplet Loss: With omitted adaptive weighting factors αn = αp = 1 from Equa-

11

2 Related Work

tion 2.6, the Triplet Loss [28,29] can be degenerated as below:

LTriplet = lim
γ→+∞

1

γ
Lcircle

= lim
γ→+∞

1

γ
log
[

1 +
K∑
i=1

L∑
j=1

exp(γ((sjn − sip)− (∆n −∆p)))
]

= max[sjn − sip]+

(2.8)

Equation 2.8 indicates that one of the most distinguished differences between Circle
Loss and vanilla approach (sn − sp) is the min-max manner of optimization target
suggested in Circle Loss. Without loss of generality it can be deduced with the
following simplified log-sum-exp format:

y = log(1 +
N∑
n=1

exn)

⇔ ey = 1 +
N∑
n=1

exn

⇔ (ey − 1) · e−max{xn}Nn=1 =
N∑
n=1

exn−max{xn}Nn=1

⇔ ey−max{xn}Nn=1 = e−max{xn}Nn=1 +
N∑
n=1

exn−max{xn}Nn=1

⇔ y = max{xn}Nn=1 + log(e−max{xn}Nn=1 +
N∑
n=1

exn−max{xn}Nn=1︸ ︷︷ ︸
6 N

)

(2.9)

To this end, the optimization problem of minimizing y can thus be incorporated to
two sub-targets:

• to minimize the maximal value max{xn}Nn=1, and

• to minimize distances between all {xn}Nn=1 and their maximal value.

The adaptive weighting factors αn, αp are designed in a self-paced manner as
follows: {

αjn = [sjn −On]+

αip = [Op − sip]+ ,
(2.10)

where On, Op denote optima of the between-instance and within-instance similarity
pairs respectively.

12

2.2 Loss Functions

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0 12.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

y= x+ log(e−x + e−a)
a = -5
a = -3
a = -1
a = 1
a = 3
a = 5

Figure 2.5: Plot of Toy Function y = x+ log(e−x + e−a) with Ascending a.
With substitution of max{xn}Nn=1 from Equation 2.9 by x, and of ap-
proximated underbraced term by e−a.
It is clear that the minimal y is reachable with smaller x and greater a,
indicating the two sub-targets of minimizing y: to minimize the maximal
value max{xn}Nn=1, and to minimize distances between all {xn}Nn=1 and
their maximal value.

The following four hyper-parameters are further reduced through:


On = −m
Op = 1 +m

∆n = m

∆p = 1−m,

(2.11)

where m denotes relaxation factor, which controls both adaptive weighting factors
and margins. In the original paper, the relaxation factor m is empirically set as 0.25
to achieve best results. It indicates that the optima On = −0.25, Op = 1.25, which
are beyond the theoretical range of cosine similarity. The benefit is obvious, inas-
much as even if the between-class similarity is optimized (sn → 0), for example, it
can still make a minor yet non-negligible contribution to the total loss with weight-
ing factor αn = 0.25 to avoid losing dynamics.

To this end, only 2 hyper-parameters remain, namely the scale factor γ and the
relaxation factor m. With substitutions from Equation 2.10 and Equation 2.11,

13

2 Related Work

0.0 0.2 0.4 0.6 0.8 1.0
sn

0.0

0.2

0.4

0.6

0.8

1.0

s p

0.4

1.0

2.5

αp :αn

0.2

1.0

2.0

3.0

4.0

5.0

Figure 2.6: Adaptive Weighting Factors of Circle Loss.
Colors denote the ratio of two weighting factors αp : αn. Dashed lines
illustrate three representative isolines, indicating for example the sp term
plays a more significant role in the optimization process than sn when
αp : αn = 2.5 > 1. The trend of isolines corresponds with Figure 2.4.
Weighting factors are defined as referred to Equation 2.10 and Equa-
tion 2.11 with m = 0.25.

Equation 2.6 can thus be rewritten as below:

Lcircle = log
[
1 +

L∑
j=1

exp(γ[sjn +m]+(sjn−m))
K∑
i=1

exp(−γ[1 +m− sip]+(sip− 1 +m))
]

(2.12)

To sum up, the Circle Loss provides a mechanism upon the similarity loss pair
to regularize the numerical values of two loss terms. It is expected to avoid the
case that the optimization processing is terminated as the one loss term is well
converged while the other not. In the ablation experiments, the simplified version
is investigated to build the adaptive version of loss weights. Although the results
show that the overall performance has not been improved with the adaptive loss
weighting factors, it is believed that the attempt is valuable and is promising in the
further similarity loss pair based approaches.

2.3 Clustering Techniques

2.3.1 Radial and Angular Clustering

One of the most intuitive approaches of clustering is radial or angular cluster-
ing. Based on the preselected clustering centers (or so-called seeds) and predefined
lengths or angles as thresholds, all embeddings within these areas are clustered as

14

2.3 Clustering Techniques

one instance, as shown in Figure 2.7.

(a) Radial Clustering (b) Angular Clustering

Figure 2.7: Radial and Angular Clustering.
µA, µB denote the centers of cluster A (blue) and B (green) respectively.

The difficulties of this understandable approach are:

• The seeds should be learned, which may decrease the accuracy of final clus-
tering results.

• The thresholds should be learned, which may decrease the accuracy of final
clustering results; or self-defined, which may be hard to choose especially for
instances with varied forms and sizes.

It is advantageous in computation overhead and is geometrically meaningful, es-
pecially when margins between and within instances are applied. Figure 2.7 (a)
shows that the hyper-parameter radius is related to the within-class margin δ2 in
Equation 2.4.

2.3.2 Mean Shift

Mean Shift [30–32] is a centroid based clustering method, where the number of the
clusters is not required in advance. As this is the case in the field of instance seg-
mentation, unnecessary parameter of the number of clusters is one of the criteria for
the clustering techniques for instance segmentation. Since there are some variants
of Mean Shift with different kernels or other implementation details, the following
introduction is based on the one implemented in the Python package scikit-learn [33].

The Mean Shift works as follows. The to-be-shifted mean vector for the i-th seed
of t-th iteration on the basis of (t − 1)-th mean vector mt−1(xi) = xi is defined as

mt(xi) =

∑
xj∈N(xi)

K(xj − xi)xj∑
xj∈N(xi)

K(xj − xi)
, where the Gaussian Radial Basis Function Ker-

nel (RBF Kernel) is used K(xj − xi) = exp
(
− ||xj − xi||

2

2h2

)
with the bandwidth h,

which also defines the grid size for sampling in the initial stage and the threshold

15

2 Related Work

for defining neighborhoods.

Ostensibly, one of the advantages of Mean Shift is the single hyper-parameter
bandwidth, which has a physical meaning. Yet in the practical experiences, it is
also hard to choose a proper one. And for the scikit-learn’s implementation, the
complexity tends towards O(T · n · log(n)) in lower dimensions and O(T · n2) in
higher dimensions, with n the number of samples and T the number of points [33].

Input: DB : Database; ε: Radius; minPts : Density threshold;
dist : Distance function;

for each point p in database DB do
if label(p) 6= undefined then continue;
Neighbours N ← RangeQuery(DB, dist, p, ε);
if |N | < minPts then

label(p) ← Noise;
continue;

end
c ← next cluster label;
label(p) ← c;
Seed set S ← N \ {p};
for each q in S do

if label(q) = Noise then label(q) ← c;
if label(q) 6= undefined then continue;
Neighbors N ← RangeQuery(DB, dist, q, ε);
label(q) ← c;
if |N | < minPts then continue;
S ← S ∪N ;

end
end

Function RangeQuery(DB, dist, q, ε):
Neighbors = empty list;
for each point p in database DB do

if dist(q, p) ≤ ε then
Neighbors = Neighbors ∪{p};

end
end

return Neighbors

Listing 2.1: Pseudocode of Original Sequential DBSCAN Algorithm.
Adapted and summarized from [34,35].

16

2.3 Clustering Techniques

2.3.3 Density Based Clustering

Two density based clustering techniques are introduced and compared in this sec-
tion: DBSCAN [34, 35] and its successor HDBSCAN [36, 37]. Again, there exists
a number of variants with different implementation details like more efficient ones
with different data structures to accelerate the performance, the original sequen-
tial version of DBSCAN [34] is introduced through pseudocodes as baseline. The
pseudocodes of it can be found in Listing 2.1. In contrast, the [38]’s implementation
for HDBSCAN is briefly introduced through the abstract pipeline together with sev-
eral techniques of graph theory and data structures to emphasize the hierarchical
characteristics.

The hierarchical variant of DBSCAN allows varying density clusters instead of
predefined radius ε. As mentioned previously, the introduced DBSCAN algorithm
is the original sequential version. In practice, it is realized with helps of several graph
theory and data structure techniques. The pipeline below shows how HDBSCAN
works, which is adapted from [38]’s implementation. Both two algorithms share the
first three steps. Instead of taking radius ε as a threshold for the dendrogram as
how DBSCAN works, however, a different approach is taken for HDBSCAN: the
dendrogram is condensed by investigating the number of the points in the clusters.
The pipeline of the HDBSCAN algorithm is introduced as below:

• Transform the space according to the density/sparsity. Based on the hyper-
parameter min_samples, two terms are defined: core distance of the target point
is the maximal distance between the target point and its min_samples nearest
neighbors, and mutual reachability distance between two points is the maximal
of three parts: their core distances and the distance between the two points,
formalized as dmr(a, b) = max{dcore(a), dcore(b), d(a, b)}.

• Build the minimum spanning tree of the distance weighted graph. The cal-
culated mutual reachability distances for point pairs can be considered as a
weighted undirected graph. To build the minimum spanning tree, the Prim’s
algorithm is performed, which is a greedy algorithm that finds a minimum
spanning tree for a weighted undirected graph.

• Construct a cluster hierarchy of connected components. Given the minimum
spanning tree, a single-linkage clustering is performed with the efficient union-
find data structure to preliminarily hierarchize the points in the form of dendro-
gram. To this end, the difference between DBSCAN and HDBSCAN begins.

• Condense the cluster hierarchy based on minimum cluster size. Here, the
second hyper-parameter min_cluster_size is in use. The cluster hierarchy is
investigated in a top-down manner, and the splitting is taken place if both of
the two split clusters have more than min_cluster_size points.

• Extract the stable clusters from the condensed tree. The strategy used to avoid
artifacts is to omit all of its descendants if a cluster is selected. The measure of

17

2 Related Work

stability of a cluster is defined as
∑

p∈Cluster(λp−λbirth), with λ = 1/distance.
Intuitively speaking, the large distance of points inside one cluster implies that
the cluster is unstable. With this in mind, if the stability of the target parent
cluster is greater than the summed stabilities of all its descendants, the child
clusters are unselected.

2.3.4 Mutex Watershed

Unlike the previously introduced clustering techniques, Mutex Watershed [39] is
based on the graphs with weighted edges. As the name indicates, the proposed al-
gorithm follows the analogue methodology of Seeded Watershed algorithm [40] and
the clustering results are expected to be mutual-exclusive (mutex), which means that
each node belongs to one and only one cluster.

The algorithm is demonstrated with pseudocode as below:

Input: weighted graph G (V,E+ ∪ E−,W+ ∪W−);
Output: clusters defined by active set A+;
Initialisation: A+ = ∅;A− = ∅;
for e ∈ (E+ ∪ E−) in descending order of W+ ∪W− do

if e ∈ E+ then
if not connected(i, j) and not mutex(i, j) then

merge(i, j): A+ ← A+ ∪ e;
end

else
if not connected(i, j) then

addmutex(i, j): A− ← A− ∪ e;
end

end
end

Listing 2.2: Pseudocode of Mutex Watershed. Adapted from [39].
A self-implemented version using python library NetworkX [41] can be
found at https://yuliwu.github.io/gist/mutex-watershed.

A weighted graph G is defined with the set of vertices V , the set of edges E and the
set of weights W , where positive weights denote these two vertices are attractive to
each other, and vice versa. All edges with two vertices (i, j) are traversed and added
to the investigated set A = A+ ∪ A−, where A+ denotes the active set of positive
edges and A− denotes the mutual-exclusive set of negative edges. Two predication
functions connected(i,j) and mutex(i,j) check whether two conditions are fulfilled:

• connected(i,j)=True: adding the edge (i, j) to the active set of positive edges
A+ causes a connected cycle in A+;

18

https://yuliwu.github.io/gist/mutex-watershed

2.4 State of the Art

• mutex(i,j)=True: adding the edge (i, j) to A+ causes a connected cycle in A+ ∪
A−, which contains at least one edge with a positive weight and at least one
edge with a negative weight .

The corresponding operations are executed with different predications as presen-
ted in Listing 2.2:

• merge(i,j): merge (i, j) and inherit the mutex constraints of the parent clusters;

• addmutex(i,j): add mutex constraint between (i, j) .

2.4 State of the Art

In this section, two categories of instance segmentation algorithms are introduced.
The first one utilizes the strategy called instance-first, where the bounding boxes are
predicted in advance, and then the pixelwise instance-level labels (called masks) are
refined based on the bounding boxes. Mask R-CNN [42] is a representative which
follows the strategy. In Section 2.4.1, the modifications based on Mask R-CNN and
other novel approaches with the same philosophy are also briefly introduced. The
other category is so-called deep embedding learning algorithms, which follow embed-
ding and clustering pipeline based on the embedding domain. Among those, four
approaches [10–13] which share similar philosophies are investigated and compared
in details.

In addition, other approaches are worth briefly introduced. The following three
methods are contour-based: [43] is focusing on learning the contours based on the
semantic segmentations; [44,45] extend the Watershed and Snake algorithms, known
as classical (non machine learning) image processing methods, to the deep learning
versions respectively.

2.4.1 Instance-First Approaches

Instance-first means the bounding boxes of each instance-level objects are first detec-
ted, based on which the pixelwise masks are refined. In the following, two categories
of methods are introduced, namely one with anchor-based object detector like Faster
R-CNN [46] and the other with anchor-free object detector like Fully Convolutional
One-Stage (FCOS) [47].

Faster R-CNN Based

The proposal-based meta-algorithm Mask R-CNN [42] has gathered a quite decent
reputation in the field of instance segmentation due to its understandable end-to-
end pipeline and reliable performance on the diverse datasets. The robustness of
Mask R-CNN is partly attributed to the Region Proposal Network (RPN) originally
from [46], which proposes instance-level candidates in the form of bounding boxes
based on anchors. The pipeline is illustrated in Figure 2.8.

19

2 Related Work

(a) (b)

Figure 2.8: (a): Mask R-CNN model. Adapted from [48].
(b): Outputs from different stages. Top to bottom: proposal; box+class;
mask. Adapted from [49].

To date, the Mask R-CNN and its variants has obtained a lot of success in the ap-
plication field, especially those dealing with different challenges. Moreover, a consid-
erable number of modifications based on Mask R-CNN have been proposed [50–52].
One of the most recent work is [53], which uses the techniques of classical computer
graphics to improve the performance of mask refinement, by replacing mask head
in the original work with the Point-based Rendering (PointRend) neural network
module.

FCOS Based

Although the RPN provides robustness over varied image categories [49], the over-
head of computation related to the anchor boxes can be avoidable if the bounding
boxes can be detected directly from raw image inputs. FCOS [47] predicts per pixel
Classification, Center-ness and Regression simultaneously in one stage, where Clas-
sification is denoted as a one-hot vector, Center-ness is denoted as the probability
of this pixel being the center of a bounding box, and Regression is denoted as a
one-by-four vector representing the distances between the center and the four edges
of the bounding box. Due to its simpler pipeline compared to Faster R-CNN, FCOS
is becoming the state-of-the-art object detector, and thus the first stage of instance
segmentation to provide instance-level bounding boxes. Some of the instance seg-
mentation approaches are directly concatenated after the FCOS pipeline, construct-
ing two-stage approaches; while others modify the heads of FCOS, constructing
single-shot approaches. The most recent former methods are shortly introduced be-
low and the latter ones are introduced in Section 2.4.2.

[54] utilizes Spatial Attention-Guided Mask (SAG-Mask) to refine the masks based

20

2.4 State of the Art

on the predicted bounding boxes more accurately, as the Spatial Attention Module
(SAM) helps to focus on the informative pixels and to reduce the noise. Furthermore,
the light-weight backbone termed VoVNetV2, newly modified from VoVNet [55],
makes this approach possible to perform in real-time. [56] exploits the BlendMask
module, which shares the feature maps from backbone or FPN layers as bases, to
segment position-sensitive instance features effectively. Only one convolution layer
is added on top of the each bounding box prediction to produce attention maps,
making this method real-time possible in inference.

2.4.2 One-Stage Approaches

As introduced previously, FCOS as a one-stage object detector simplifies the pipeline
compared to Fast R-CNN and becomes popular as the first stage of instance seg-
mentation. Moreover, FCOS can also be modified to become a one-stage instance
segmentation method, without generating bounding boxes first.

In [57], the third head in original FCOS Regression is replaced by a one-by-n
vector, where n denotes the number of rays which are the edges between the center
and contour. Analogously, [58] is another single-shot instance segmentation method
based on FCOS. In this work, the fourth head is added compared with original
FCOS, termed Mask Regression, which is a compact representation of the encoded
binary masks of the whole image by flattening, concatenation and reconstruction.
In addition, the masks are calculated with help of pixel embedding and proposal
embedding in [59], which are learned from the FCOS parallel to the original heads..

Table 2.1: Comparison of Deep Embedding Learning Methods.
s+learned denotes the embeddings are clustered using learned seeds and
learned radii; s+hyper denotes the embeddings are clustered using learned
seeds and self-defined angles as hyper-parameters.

Methods Distance Local Margin Learned Clustering(by last name) Constraint Seeds
De Brabandere [11] Euclidean X Mean Shift
Payer [13] Cosine X HDBSCAN
Neven [12] Euclidean X X s+learned
Chen [10] Cosine X X s+hyper

2.4.3 Deep Embedding Learning Approaches

The approaches based on pixel embedding learning, which also belong to one-stage
approaches, are becoming a new trend. In this section, four deep embedding learn-
ing approaches [10–13] are introduced. They share the general pipeline of embedding

21

2 Related Work

and clustering. Each pixel of input images is mapped to a high-dimensional vec-
tor (embedding), in which pixels of the same object are located closely. Then,
clustering in the embedding space results in the final instance segmentation. De
Brabandere and Neven [11, 12] have proposed Euclidean distance based embedding
loss for instance segmentation. Payer et al. [13] have demonstrated embedding loss
which utilizes cosine similarity and recurrent stacked hourglass network [19]. Chen
et al. [10] have introduced a U-Net based architecture of two heads, where the em-
beddings are trained with cosine embedding loss and local constraints. These two
heads are distance regression head and embedding head. The distance regression
head aims to provide seed candidates for clustering. The proposed method inherits
the fundamental modules from this work. A comparative table regarding with dis-
tinctive characteristics of the four methods is presented in Table 2.1.

Figure 2.9: Hourglass with Cosine Embeddings. Adapted from [13].

2.4.4 Other Approaches on Leaf Segmentation

In this section, several approaches that focus on the dataset Leaf Segmentation are
introduced of two groups.

The first one covers four classical (non deep learning) methods collectively re-
ported in [4]. The IPK pipeline [60] relies on unsupervised clustering and distance
maps to segment leaves. Another all-unsupervised method Nottingham achieves
segmentation with SLIC superpixels [61], that does not require any training is used.
The training dataset has been used for parameter tuning only. Moreover, the MSU
approach [62] extends a multi-leaf alignment and tracking framework to the leaf
segmentation based on Chamfer Matching [63]. Lastly, in Wageningen [4], the wa-
tershed algorithm [64] is applied on the foreground segmentation to achieve instance
segmentation, which is obtained by supervised methods.

The second group is corresponding to the synthetic dataset, which can enlarge
the number of training images and their shapes. Universal Plant Generator (UP-
Gen) [65,66] utilizes randomly sampled leaf geometries, textures and plant paramet-
ers to generate a 3D plant model for synthetic data. The augmentation of exploiting
real+synthetic data brings in state-of-the-art results using Mask R-CNN.

22

2.5 Other Techniques

2.5 Other Techniques

Distance Transform

Based on binary images as inputs, all pixels are transformed to their distances to
the nearest zero pixels. Figure 2.10 illustrates an example.

Figure 2.10: Example of Distance Transform.

In this thesis, the implementation of the OpenCV library with the algorithm
from [67] is used. The transformed images are termed as distmap in the following
chapters, from which the seeds (centroid pixels inside of one object) can be easily
obtained after thresholding. Furthermore, the distmap can also be related to the
trend of image segmentation term attention, which emphasizes merely the location
of the target object and fades other pixels.

Sigmoid + Binary Cross-Entropy Loss

Originally designed for binary classification tasks, Binary Cross-Entropy Loss, or
BCE Loss is defined as:

LBCE = − 1

N

N∑
n=1

ygtn log(ŷn) + (1− ygtn) log(1− ŷn), (2.13)

where ygtn denotes ground truth and ŷn denotes predictions.

For binary classification tasks, the outputs of the last layer before loss are usually
activated with sigmoid function to make them bounded between 0 and 1, as shown
in Figure 2.11(a). The sigmoid activation function is defined as:

FSigmoid(x) =
1

1 + e−x
. (2.14)

Linear/ReLU + Mean Squared Error Loss

LMSE =
1

N

N∑
n=1

(ygtn − ŷn)2, (2.15)

23

2 Related Work

where ygtn denotes ground truth and ŷn denotes predictions.

For regression tasks, the outputs of the last layer before loss are usually activated
with linear function, as shown in Figure 2.11(b). In the case that the expected
values are always non-negative, the Rectified Linear Unit (ReLU) can be also used
to "manually" eliminate all negative signals, as shown in Figure 2.11(c). The linear
and ReLU activation functions are defined as:

FLinear(x) = x (2.16)

FReLU(x) = [x]+ =

{
0, if x < 0 ;

x, otherwise .
(2.17)

−6 −4 −2 0 2 4 6

0.0

0.2

0.4

0.6

0.8

1.0

Sigmoid

(a)

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Linear

(b)

−6 −4 −2 0 2 4 6

0

1

2

3

4

5

6

7

8

ReLU

(c)

Figure 2.11: Activation Functions: Sigmoid, Linear and ReLU.

mSBD: Mean Symmetric Best Dice

Dice score [68] is one of the most widely used metrics to evaluation quality of seg-
mentation tasks. In the dataset CVPPP LSC, the Symmetric Best Dice (SBD) [4]
is used, which illustrates the symmetric average Dice among all objects (leaves),
where for each input label the ground truth label yielding maximum Dice is used
for averaging, to estimate average leaf segmentation accuracy. Best Dice (BD) is
defined as:

BD(La, Lb) =
1

M

M∑
i=1

max
1≤j≤N

2|Lai ∩ Lbj|
|Lai |+ |Lbj|

, (2.18)

where | · | denotes leaf area (number of pixels) and Lai for 1 ≤ i ≤ M andLbj
for1 ≤ j ≤ N are set of leaf object segments belonging to leaf segmentations La
and Lb, respectively. SBD between Lgt, the ground truth, and Lar, the algorithmic
result, is defined as:

SBD(Lar, Lgt) = min{BD(Lar, Lgt),BD(Lgt, Lar)} . (2.19)

In this thesis, the Mean Symmetric Best Dice (mSBD) is used to evaluate the pre-
dicted results, which denotes the per image average of the SBD scores.

24

2.5 Other Techniques

mAP: Mean Average Precision

Before introducing mean Average Precision (mAP) defined in [69], another evalu-
ation metric analogue to Dice score, Intersection over Union is introduced with the
definition:

IoU =
TP

FN + TP + FP
, (2.20)

where FN=False Negative, TP=True Positive and FP=False Positive. Note that
the definitions here are corresponding to the number of pixels with perspective of
objects.

Mean Average Precision (mAP) is calculated as follows. For each image, the
predicted segmentation of each object is judged: if the IoU score for this predicted
segmentation is larger than threshold IoU, then this predicted object-level segmenta-
tion is regarded as correct. After that, for each image the Precision can be calculated
with respect to the number of FN, TP and FP predictions of objects:

Precision =
TP

FN + TP + FP
. (2.21)

Note that the definitions here are corresponding to the number of predicted ob-
jects with perspective of images and it is different to widely accepted definition of
precision, as FN is also taken into consideration. This processing is repeated for
IoU={0.5, 0.55, ..., 0.9}, and the calculated Precisions for each IoU threshold are
averaged. As the name implies, Average denoted the averaged Precisions over IoU
thresholds and mean denotes the averaged Average Precision over images.

25

3 Method

On the basis of the previously introduced state-of-the-art knowledge, a novel al-
gorithm of instance segmentation via deep embedding learning, modified from [10],
is presented in this chapter. It takes full advantage of learned distance transform-
ation regression maps, which are originally used for extracting seeds for angular
clustering during post-processing. In the experiments, it is found that the distance
transformation regression maps being a concatenative layer to the original RGB
images as the inputs of network can leverage the spatial information implicated in
them to improve the accuracy of segmentation.

Figure 3.1: Ambiguity between Leaf Boundary and Leaf Midvein (Primary Vein).

One of the most challenging parts of the CVPPP Leaf Segmentation dataset is
that the ambiguity between leaf boundaries and leaf midveins, as illustrated in Fig-
ure 3.1. The adjacent leaves can thus very hard to be correctly segmented, as the
colors are extremely similar. This is also the problems reported from [10]. The main
novelty of this thesis is corresponding to the module, so-called distance concatenat-
ive layer, which aims to supply direct and accurate spatial information. In this work,
a simple, yet highly effective, architecture for object-aware embedding learning has
been proposed. A distance regression module is incorporated into our architecture
to generate seeds for fast clustering. At the same time, it is shown that the fea-
tures learned by the distance regression module are able to promote the accuracy of
learned object-aware embeddings significantly. By simply concatenating features of
the distance regression module to the images as inputs of the embedding module, the

27

3 Method

Figure 3.2: Processing Pipeline.
Distance regression features and distmaps are learned via distance mod-
ule with U-Net 1. Concatenated distance regression features and raw
images are fed into U-Net 2, from which the embeddings are learned.
Final labels are generated based on seeds (thresholded maxima of dist-
maps) and embeddings via angular clustering. Denotations: H, W, C,
E=Dimensions of Height, Width, Channel, Embedding.

mSBD scores on the CVPPP Leaf Segmentation Challenge can be further improved
by more than 8% compared to the identical set-up without concatenation, yielding
the best overall result amongst the leaderboard at CodaLab.

3.1 Processing Pipeline

The proposed network consists of two cascaded parts (Figure 3.2): the distance
regression module and the embedding module. Each module uses a U-Net archi-
tecture with a 32-dimensional output feature map as the backbone network. The
learned distance and embedding feature maps are denoted as D-feat. and E-feat.,
respectively.

The distance regression module takes normalized images as the inputs and out-
puts the distance map (abbreviated as distmap in the following context) through
a single convolutional layer with ReLU activation. The ground truth distmap is
obtained by computing the shortest distances from pixels to the object boundary
and then being normalized instance-wise with respect to the maximal value. The
distance regression module is trained with Mean Squared Error (MSE) loss in this
work, which is illustrated as D-loss in Figure 3.2.

Distance feature map D-feat. learned by the distance regression module is fed to

28

3.2 Cosine Embedding Loss with Local Constraints

the embedding module together with the input image by concatenation. Details of
the concatenation are introduced in Section 3.3. The final embeddings are obtained
through a convolutional layer with linear activation, followed by L2 normalization.
The embedding module is trained with the loss based on the cosine similarity and
local constraints (Section 3.2), denoted as E-loss in Figure 3.2.

The embedding space trained with loss in Equation 3.1 has a comprehensive geo-
metric interpretation: embedding vectors of neighboring objects tend to be ortho-
gonal, which simplifies the complexity of clustering. The fast angular clustering
based on angles between embedding vectors can be effortlessly performed. Firstly,
seeds are obtained from distmaps by fetching local maxima with a trivial threshold
(selected as 70% of the global maximum in an image). After that, all neighboring
pixels within the angular range δa of a seed are collected to form a cluster. In this
work, δa = 45 deg is used for all experiments. At last, the labels outside of the
officially provided ground truth foreground masks are omitted.

3.2 Cosine Embedding Loss with Local Constraints

For the embedding module training, we build upon the loss format from [10]. The
training loss, denoted as E-loss in Figure 3.2, is defined based on the cosine similarity

Scos(e1, e2) =
e1

Te2
‖e1‖‖e2‖

and is formularized as:

Lemb = λ · Linter + Lintra

Linter =
1

C

C∑
cA=1

1

|NcA|
∑

cB∈NcA

[
Scos(µcA , µcB)

]
+

Lintra =
1

C

C∑
c=1

1

Ec

Ec∑
i=1

[
1− Scos(ei , µc)

]
+
,

(3.1)

where the embedding loss is defined as the weighted sum of the between-instance
loss term Linter and within-instance loss term Lintra with the weighting factor λ. e
and µ represents the pixel embedding vector and the mean embedding of an object,
respectively. C denotes the number of objects, while the number of pixels of a single
object c is denoted as Ec. NcA represents the set of neighboring objects around
object cA and |NcA| is the number of neighbors.

The between-instance loss term Linter encourages the embeddings of different ob-
ject to be separated, while the within-instance loss term Lintra punishes the case
where pixel embeddings of the same object diverge from the mean. In addition, the
local constraints of this loss only force neighboring objects to form separable clusters
in the embedding space. The benefits of local constraints and the comparison with
the global constraint are demonstrated in Section 4.2.2.

29

3 Method

3.3 Feature Concatenative Layer

The feature map D-feat. learned by the distance regression module is firstly trans-
formed to the desired dimension (shown with an example of 32 in Figure 3.2) via a
convolutional layer and then L2 normalized along through each pixel before being
concatenated to the raw images. Our experiment shows that the feature map nor-
malization is critical to a stable training process.

As illustrated in Figure 3.1, the difference between leaf boundary and leaf midvein
(primary vein) is ambiguous. The learned embeddings by the U-Net architecture [10]
often fail at those locations. However, the distmaps are able to tell the difference
with lower values representing leaf boundaries and higher values representing leaf
midveins. From another perspective, the distmap, which gives an approximate out-
line of objects, can be interpreted as a object-ness score, the pixel-wise probability
about existence of object. In addition, as proposed by [70], mixing convolutional
operations with the pixel location helps constructing dense pixel embeddings that
can separate object instances. From this perspective, the distance regression fea-
tures can indirectly provide location information to the subsequent module. The
performance improvement from U-Net with two heads to the proposed W-Net is
illustrated. In Figure 3.3, two representative cases are demonstrated, where the U-
Net fails to separate closely located leaves. In contrast, the W-Net has successfully
distinguished the numbered leaves in Figure 3.3.

Figure 3.3: Learned Embeddings with U-Net and W-Net. Numbered leaves are
treated as one object by U-Net, while they are successfully separated
in the embedding space learned with W-Net.

To this end, a two-stage architecture has been conducted, as depicted in Fig-
ure 3.2, by forwarding the distance regression features to the embedding module.

30

3.4 From U-Net to W-Net

And the concatenation of the distance regression features and raw images can bring
in best performance in the experiments. We term the distance features as con-
catenative layer in between the stacked U-Nets as intermediate distance regression
supervision. In the experiments, different features to forward have been tested:
the 1-dimensional distmap, 8-dimensional distance features, 32-dimensional distance
features, 32-dimensional embedding features, concatenated 16-dimensional distance
features and 16-dimensional embedding features. Inspired by [12, 70], the perform-
ance of augmenting the input image with x- and y-coordinates has also been tested.

Figure 3.4: Hybrid Network Architectures of U-Net and W-Net.

3.4 From U-Net to W-Net

We abbreviate the proposed network as W-Net to differ from the existing U-Net with
two heads, although the novelty and characteristic are not fully represented: the
distance regression features as intermediate supervision and the cosine embedding
loss with local constraints. In addition, a hybrid network (Figure 3.4) has been
constructed, where the left half illustrates the U-Net with two heads from [10] and
the top half illustrates the proposed one, termed W-Net. The intuition of this
hybrid network is to fairly compare the network performance with and without
the distance regression features in a simultaneous manner. By default, this hybrid
network is used in experiments. Empirically speaking, the hybrid network results
are consistent with that of the W-Net without the embedding head of the U-Net 1.
The ablation experiments can be found in details in the next chapter.

31

4 Experiments

Based on the method presented in Chapter 3, the experiments related to the chosen
set-ups are introduced in detail. Section 4.1 describes three datasets applied with the
proposed method briefly. Following that, the main results are presented, including
the top-positioned result of Leaf Segmentation Challenge. In Section 4.2, eight
ablation experiments are conducted, which deliberates whether and to what extent
the variables, including network architectures, loss formats and hyper-parameters,
can exert an influence on the final results. Each section of ablation experiment
consists of implementation and results subsections apart from the main introduction
part, where the details of the parameter set-ups and corresponding comparison of
final performance are showcased. The results subsections preliminarily discuss the
influences of different components, while the overall and more detailed evaluation
can be found in Chapter 5.

4.1 Datasets

In this thesis, three datasets are primarily used, which can be ostensibly categor-
ized into two types: single-class and multi-class. CVPPP Leaf Segmentation and
BBBC006: U2OS Cells are two datasets containing only one class [4, 71], and the
Cityscapes dataset has multiple [9]. The focus of this thesis is to concentrate in the
instance segmentation without considering the semantic segmentation. Therefore
the single-class datasets are mainly investigated. With this in mind, the dataset
of CVPPP Leaf Segmentation is the target dataset in this thesis, and the dataset
of BBBC006: U2OS Cells is served as validation also with final scores to evalu-

Table 4.1: Roles of 3 Datasets in this Thesis.
Class: the kind of objects; Channel: RGB or grayscale; Ablation: the com-
parison experiments, see Section 4.2; Scores: concrete evaluation scores,
like Dice or AP; Predict: showcases of predicted instance segmentation
labels; Testing gt: whether the ground truth of testing set is given.

Class Channel Ablation Scores Predict Testing gt

Leaf Seg. single 3 X X X unknown

U2OS Cells single 1 X X known

Cityscapes multi 3 X unknown

33

4 Experiments

ate the performance. The dataset of Cityscapes, due to its complexity of semantic
segmentation, is merely demonstrated by the predicted labels as showcases without
comparing the concrete scores for evaluation. Table 4.1 showcases the main features
and roles of the three datasets in this thesis.

4.1.1 CVPPP Leaf Segmentation

Computer Vision Problems in Plant Phenotyping (CVPPP) holds several biological
and agricultural datasets, including Leaf Segmentation [4], Leaf Counting [4] and
Global Wheat Head Detection [72]. Leaf Segmentation and Leaf Counting are hold
as workshops or challenges by top-level conferences in the recent years, including
ECCV 2014 (Zurich, Switzerland), BMVC 2015 (Swansea, UK), ICCV 2017 (Venice,
Italy), BMVC 2018 (Newcastle, UK), CVPR 2019 (Long Beach, USA) and upcom-
ing ECCV 2020 (Glasgow, UK).

Since 2017, the Leaf Segmentation dataset has extended with more images and a
permanent challenge website has been set up in CodaLab: https://competitions.
codalab.org/competitions/18405. This is the version used in this thesis due to
its fairness, as the ground truths of testing set are not available and the scores can
be learned only by submitting the results.

The Leaf Segmentation dataset contains two types of plants: Arabidopsis and
Tobacco, as shown in Figure 4.1. They are particularly different speaking of shapes,
including the size of leaves and the leaf stems. As captioned, one of the challenging
tasks of this dataset is the extremely imbalanced number of the two types of plants
in training set and testing set. Specifically, the images of Tobacco contribute only
approximately 3% in training set, whereas more than 20% of testing images are
Tobacco.

(a) Arabidopsis: 783 train / 388 test (b) Tobacco: 27 train / 112 test

Figure 4.1: Examples of Leaf Segmentation.

4.1.2 BBBC006: U2OS Cells

Broad Bioimage Benchmark Collection (BBBC) contains a rich range of microscopy
image sets provided by Broad Institute [71]. The used dataset BBBC006: U2OS
Cells is one of them that consists of Human Bone Osteosarcoma Epithelial Cells, also

34

https://competitions.codalab.org/competitions/18405
https://competitions.codalab.org/competitions/18405

4.1 Datasets

known as U2OS Cells. Totally 754 images are taken for the instance segmentation,
half among which are categorized into the training and validation set with the ratio
4:1 and the other half into the testing set. The grayscale images are transformed to
the shapes (512,512) in the datatype of uint16. Unlike the Leaf Segmentation where
the testing ground truth is unreachable and the evaluation for predicted results is
completed totally online, the evaluation for this dataset is locally carried out. The
purpose of using this dataset is to compare different set-ups based on the prior
knowledge of ablation experiments using Leaf Segmentation. The results can be
found in Section 4.4.

(a) (b)

Figure 4.2: An Example of BBBC006: U2OS Cells

4.1.3 Cityscapes

The Instance-Level Semantic Labeling Task is one of the four benchmarks of City-
scapes dataset. The following ten semantic classes have instance-level labels avail-
able: person, rider, car, truck, bus, train, motorcycle, bicycle, and caravan, trailer.
The predicted instance-level segmentations of last two classes, caravan and trailer,
are not considered in the final submission. Also to notice that if the boundary
between instances cannot be clearly seen, the whole crowd is labeled together and
annotated as group, e.g. car group.

As shown in Figure 4.3, the Cityscapes dataset is more complicated than previous
two. The cars and persons are often occluded, and the sizes of the objects are rather
varied. Furthermore, due to the point of view from the cockpit, the depth of field
and the vanishing point in the middle are salient. The size of images plays also a
significant role in the training, as too large input images may be out of memory.
The image shape of (1024, 2048) is much larger than that of Leaf dataset with the
average shape of (512, 512). This means the original images should be cropped into
patches and be trained patch-wise, as simply rescaling may lose the accuracy and
details, especially some of far cars and persons are extremely tiny.

35

4 Experiments

Figure 4.3: An Example of Cityscapes.

4.2 Ablation Experiments

In this section, eight ablation experiments are conducted to investigate the potential
impact factors on the final performance. Before the detailed experiments and their
evaluations, the general set-ups are introduced. The default network is W-Net with
Intermediate Supervision with local constraints in the format of polar embedding
loss. The loss of distance regression is ReLU+MSE and the concatenative layer is the
output of last feature map layer from the first U-Net. If the set-ups are changed in
the experiments specifically, details are presented in the Implementation subsections.

Following are the details of training technique set-ups for all experiments: The
weights initializer is He Normal [73] and the optimizer is Adam [74]. The adaptive
learning rate is used with exponential decay, where the initialized learning rate is
set to 0.0001, the decay steps are set to 5000 steps and the decay rate is set to
0.9. Without specifically mentioning, batch size is set to 4. In some experiments,
the batch size is set to 2 to avoid being out of memory because larger images are
used. The ablation experiments cannot traverse all possible parameters, only some
representatives are chosen to demonstrate the different performance. The set-ups of
different ablation experiments can be also varied, yet the general expectation can
be realized to utilize optimal parameters from each single ablation experiment to
obtain possible best performance.

4.2.1 Cartesian vs. Polar Embedding

As introduced and compared in Section 2.2.2 - Section 2.2.3, two main loss formats
can be applied in deep embedding learning approaches. The Cartesian Form benefits
from its intuitive implementation, the embeddings of which are however not ranged.
The unlimited embedding domain in the case of Cartesian Form has also advantages:
it is able to work in 2d, only the most remote embeddings may be located far away
from the origin. The euclidean embeddings in the Cartesian Form can also be scaled
to manually set ranged, which brings two drawbacks:

36

4.2 Ablation Experiments

• The high precision of embeddings is demanded;

• The benefit of local constraints cannot be effectively exploited.

(a) (b) (c)

Figure 4.4: Examples of Euclidean Embeddings with Global Constraints.
Images are training set results with 8 dim embeddings. Totally 8 different
colors including background have been generated.

Compared to the Cartesian Form, the Polar Form has the advantage of circula-
tion. Take an n−dim unit ball as an example, totally n linearly independent basis
vectors can be found. If the optimized progress is to pick one vector, such that this
vector is orthogonal to existed several vectors, a circulation occurs. The n basis
vectors are picked one by one, as they are all orthogonal to each other. After all
basis vectors have been once selected, the previously selected basis vectors may be
picked again, as they are far away from the last pick. The circulation of Polar
Form enables the representation of instance objects with rather limited number of
basis vectors. In the instance segmentation tasks, the distribution of embeddings,
or more informally speaking coloring the instance objects, can be vividly described
by the discussed progress of picking basis vectors. This phenomenon is illustrated
in Figure 4.4, where three resulting images of different sizes from training set using
global constraints are shown. The embeddings are of 8 dims, the first 3 of them
are illustrated. Very interestingly, there are totally 8 colors, which corroborates the
previous assumption corresponding to the basis vectors.

To clarify how the different components in the network architectures are termed
in this thesis:

• The backbone has two versions: U-Net and U-Net with 2 heads, see Ap-
pendix A for details;

• One head is defined as the right bottom-up half pathway of original U-Net;

• The set-ups of backbones are identical in all experiments with the first and
the last embeddings (or feature maps) of 32 dims;

37

4 Experiments

• The final embeddings are transformed to the selected dimensions via a tiny
convolutional layer block, termed joint block between backbone and loss in
this thesis to avoid confusion with heads.

In Figure 4.5, the different settings of joint blocks between backbone and loss for
Cartesian Form and Polar Form are illustrated. The final embeddings are defined
as 8 dim in this example. The dropout layer with rate=0.5 is applied in the first
convolutional layer. One significant difference between two forms is the application
of L2 normalization layer. No doubt that the euclidean embeddings should not be
normalized, as the Euclidean distance would be destroyed after normalization.

(a) Cartesian (b) Polar

Figure 4.5: Joint Block between Backbone and Loss.
Numbers above denote dimensions. Red arrows denote dropout.

As previously mentioned, the first 3 dims of total 8 dim embeddings are shown as
RGB channels. Empirically, it is capable to observe the performance of the embed-
dings. In this thesis, a number of images using this abbreviated representation of
embeddings can be found. As the embedding learning progress starts with randomly
initiated weights and the training images are out of order, for each trained model
there is a different color map for illustrating embeddings: also enjoy the artistic
color palettes made by machine!

The detailed loss functions are formalized in Table 4.2. The implementation and
results subsections are jointly presented in the following ablation experiment about
local and global constraints in Section 4.2.2.

4.2.2 Local vs. Global Constraints

The most salient difference between semantic segmentation and instance segment-
ation (specifically speaking one-class instance segmentation) is that the number of
semantic labels are usually given in advance, while the number of instances not.
Therefore, it is much harder to give each object a distinguished label. In addition
to this methodology, the progress of label distribution can be carried out locally:
different labels are hanged out only to adjacent objects. The former methodology is
termed global constraints and the latter one is termed local constraints in this thesis.
The mathematical background behind this idea is the Four Color Theorem [25].

Training using local constraints is not only advantageous. It makes the training
more difficult, as naturally speaking more detailed spatial information is required.

38

4.2 Ablation Experiments

After the training progress, the network should also tell if the objects are adjacent
to each other, which reflects the title of this thesis where the densely located objects
are emphasized.

Table 4.2: Four Formats of Loss Functions.
The following four equations depict the four cases of this experiment:
(Cartesian Loss, Polar Loss) × (Global Constraints, Local Constraints).

Cartesian Polar
Global Eq. 2.4 Eq. 4.2
Local Eq. 4.1 Eq. 2.5

Lemb = Linter + Lintra

Linter =
1

C(C − 1)

C∑
cA=1

C∑
cB=1

cA 6=cB

[
Deuc(µcA , µcB)− 2δ1

]2
+

Lintra =
1

C

C∑
c=1

1

Ec

Ec∑
i=1

[
δ2 −Deuc(ei , µc)

]2
+

(2.4 revisited)

Lemb = Linter + Lintra

Linter =
1

C

C∑
cA=1

1

|NcA|
∑

cB∈NcA

[
1−Dcos(µcA , µcB)

]

Lintra =
1

C

C∑
c=1

1

Ec

Ec∑
i=1

[
Dcos(ei , µc)

] (2.5 revisited)

Lemb = Linter + Lintra

Linter =
1

C

C∑
cA=1

1

|NcA|
∑

cB∈NcA

[
Deuc(µcA , µcB)− 2δ1

]2
+

Lintra =
1

C

C∑
c=1

1

Ec

Ec∑
i=1

[
δ2 −Deuc(ei , µc)

]2
+

(4.1)

Lemb = Linter + Lintra

Linter =
1

C(C − 1)

C∑
cA=1

C∑
cB=1

cA 6=cB

[
1−Dcos(µcA , µcB)

]

Lintra =
1

C

C∑
c=1

1

Ec

Ec∑
i=1

[
Dcos(ei , µc)

] (4.2)

39

4 Experiments

Implementation

The neighborhood is defined in this experiment as follows: all other objects which
have at least one pixel not farther than a predefined distance as hyper-parameter to
at least one pixel of the target object are considered as its neighbors. The distance
is selected as 2% of the shorter edge from height and width of the input image.

(a) local 8 (b) local 64 (c) global 8 (d) global 64

Figure 4.6: Learned Embeddings for Combined Cases of Local/Global Constraints
and 8/64-dimensional Embeddings. (a,b) vs. (c,d): Local constraints
ensure the effective utilization of embedding domain, as same embed-
dings appear alternately for non-adjacent objects. (a) vs. (b): Higher-
dimensional embeddings are redundant in the local constraint case. (c)
vs. (d): Lower-dimensional embeddings with global constraints are not
sufficient to distinguish all objects. This problem is slightly mitigated via
higher-dimensional embeddings, still not as effective as local constraints.

Results

Local constraints make it possible to exploit lower-dimensional embedding space
more efficiently, as in this case, we only distribute different labels to neighboring
objects. In contrast, the global constraints have to thoroughly give each single ob-
ject in the images a different label, which requires larger receptive fields and more
redundant embedding space. The combination of local constraints and cosine em-
beddings utilizes the embedding space further comprehensively, as the push force
imposed by loss expects orthogonal embedding clusters for neighboring instances.

This is confirmed qualitatively by examples showcased in Figure 4.6. In Fig-
ure 4.6(c), 8-dimensional embeddings are trained with global constraints. Not sur-
prisingly, there are exactly 8 colors in the image, indicating 8 orthogonal clusters in
the embedding space. Apparently, the global constraint will fail when the embedding
dimension is fewer than the number of objects. In contrast, the local constraints
(Figure 4.6(a) - 4.6(b)) can distribute labels alternately between objects, with the
same labels appearing multiple times for non-adjacent objects. This makes it pos-
sible to utilize a lower-dimensional embedding space. Quantitatively, the W-Net
trained with local constraints surpasses the one trained with global constraints by
more than 4% on overall mSBD, as listed in Table 4.6.

40

4.2 Ablation Experiments

Intuitively, a higher-dimensional embedding space is able to provide a higher
degree of freedom, i.e. we can simply use higher-dimensional embeddings to alleviate
the problem of global constraints. At least the embedding vector does not have to be
restricted to low dimensions. However, from the results in Figure 4.16, we find that
higher-dimensional embeddings produce worse results. This makes the capability of
using lower-dimensional embedding space particularly important.

4.2.3 U-Net vs. W-Net

Inspired by [13,19], the stacked variant of U-Net can be advantageous to improve the
performance. To describe the networks vividly, the two variants are termed U-Net
and W-Net, where the latter network is designed as two stacked U-Net. Figure 4.7
illustrates the simplified architectures, and the more detailed version can be found in
Appendix A. Without loss of generality only up to two U-Nets are stacked. Since the
distance regression has to be added to the network to calculate the seeds for angular
clustering in the post-processing, three variants are compared, as Figure 4.7(b) -
Figure 4.7(d) show. In the following, apart from the original U-Net, three variants
of it are introduced: U-net with 2 Heads, W-Net without Intermediate Supervision
and W-Net with Intermediate Supervision.

U-net with 2 Heads

Originated from [10], this network has 2 separate and parallel upsampling paths,
termed heads in this thesis, for both distance regression and embedding loss. It
utilizes the downsampling path efficiently by sharing the features to the two heads.
The two loss functions are then summed. The details of the network can be found in
Figure 4.7(b) under Appendix A. There are two reasons for this kind of architecture:

• The distance regression head is necessary, as the seeds for angular clustering
in the post-processing should be calculated by the learned distmap;

• The shared first half top-down pathway of the U-Net can reduce computational
overheads. The parallel layout of the distance regression and embedding loss
head can exploit the advantage of parallel computation.

After each head, the joint block between backbone and loss is stacked, see the
examples shown in Figure 4.5. The joint block for distance regression is analogous
to the Cartesian one, only with 1 dim convolutional layer as the distmap is mono-
channel.

W-Net: 2 Stacked U-Nets

The stacked version of U-Net provides the ability of concatenative layer between two
U-Nets. Why the concatenative layer is useful to extend features can be deduced by
analogy of RGB images against grayscale ones, as the concatenative construction is
identical. The choice of concatenation over addition is also comprehensible by the
example of RGB and grayscale images, as the concatenated tensors can be simply

41

4 Experiments

(a) Original U-Net (b) U-Net w/ 2 Heads

(c) W-Net (d) W-Net w/ Supervision

Figure 4.7: Simplified Illustrations of U-Net and Variants.
The complete network architectures can be found in Appendix A.

operated by convolutional layer to the additive results, while the addition cannot
be transformed to concatenative results effortlessly.

If the stacked U-Nets are used, one nature modification is to put distance regres-
sion head at the end of the first U-Net. The reasons are as follows:

• Separately located two heads are advantageous for concentrated training of
both the distance regression branch and embedding branch, as they have full-
sized U-Nets respectively;

• The feature maps of distance regression head are intuitively full of spatial
information, as distmap contains suggestions of where the instances are located
and the object-ness, the probability of existence of objects.

W-Net with Intermediate Supervision

[19] shows that the performance can be further improved by adding Intermediate
Supervision, which is regarded to as the additive loss in the early stages of stacked
U-Nets. Intermediate Supervision helps to keep the longer learning progress in con-
trol. With this in mind, the first U-Net from the previously presented W-Net is
modified to the U-Net with 2 Heads, where the embedding loss is also calculated in-
termediately. Again, the concatenative layer stays identical, namely the feature map

42

4.2 Ablation Experiments

of distance regression. The detailed investigation of the influences of concatenative
layer can be found in Section 4.2.4.

Table 4.3: Comparison of U-Net Variants.
Abbreviations: D=Distance regression supervision; D+E=Distance and
Embedding supervision.

Architectures Number of Parallel Intermediate Concatenative
U-Net Heads Supervision Layer

U-Net 1
U-Net w/ 2 Heads 1 X

W-Net 2 X X D
W-Net w/ Supervision 2 X X D+E

Implementation

A summary of the network architectures can be found in Table 4.3. This experi-
ment is based on the last three variants, as the distance regression is required for
the angular clustering. All trainings use the Polar loss format with local constraints
for embedding loss and ReLU+MSE for distance regression loss. If applicable, the
concatenative layer is the 32 dim feature map of distance regression. All embed-
dings are transformed to 8 dims before calculating losses. The two loss terms are
equally contributed with constant weights 1. All losses are summed, including the
intermediate embedding loss (only applicable for W-Net with Supervision), distance
regression loss and final embedding loss.

Results

Firstly, the performance improvement from U-Net with two heads to the proposed
W-Net has been illustrated via the learned embeddings in Figure 3.3, where two
representative cases are demonstrated, in which circumstances the U-Net fails to
separate closely located leaves. In contrast, the W-Net has successfully distinguished
the numbered leaves in Figure 3.3. This can be confirmed by the results of segment-
ations on the testing set. Figure 4.8 illustrates some salient examples, where the
W-Net has segmented more accurately than U-Net.

Quantitatively, W-Net surpasses U-Net on overall mSBD by approximately 8%
from 0.794 to 0.879 with the best set-ups for W-Net, as shown in Table 4.4. Un-
der different settings of embedding dimensions (Figure 4.16) and loss weights (Fig-
ure 4.10), the performance gap between U-Net and W-Net can be continuously
observed and remain about 8%.

43

4 Experiments

Ground Truth U-Net W-Net

Figure 4.8: Leaf Segmentation Results of the CVPPP2017 Testing Set: Ground
Truth (left), U-Net (middle) and W-Net (right); Each row illustrates
one example. Improvement from U-Net to W-Net is salient. The mSBD
score has increased from 0.794 to 0.879.

44

4.2 Ablation Experiments

4.2.4 Concatenative Layer

Giving the machine a target feature relevant hint is intuitively beneficial to the faster
convergence. In [10], the U-Net with 2 Heads (Figure 4.7(b)) is used as backbone.
To explain the preference of concatenation over summation, the example of RGB
images and grayscale images can be analogously considered. As the concatenated
tensors can be simply operated by convolutional layer to the additive results, while
the addition cannot be transformed to concatenative results effortlessly. In other
words, the concatenative layer can be regarded as a generalized version of summa-
tion with learned weights instead of constant 1. Some flawed results are related to
the problem that the adjacent leaves cannot be segmented separately. The other
salient problem is that the extremely large and densely located leaves cannot be
segmented correctly. Since one of the to be solved problems is the occasionally
failed segmentation of adjacent leaves, the concatenative layer which can provide
rich spatial information is expected.

As the distmaps are trained together with embeddings, to calculate seeds for
angular clustering in the post-processing, which makes the distmap a natural choice
for the concatenative layer. Distmap offers following information:

• Centers of instances can be calculated using distmap;

• Probability of if here exists an instance. Or object-ness as in some papers.

• Distinguish the leaf boundary and leaf midvein by marking the boundary as
low values and marking the midvein as high. An example of this problem can
be found in Figure 3.1. The effect is demonstrated in Figure 4.9.

Figure 4.9: Distmap as Concatenative Layer.
Red arrowed areas indicate the leaf boundary and leaf midvein, which
can be distinguished by distmap. The boundary is marked as low values
and the midvein as high.

The other candidates of concatenative layer are as follows:

45

4 Experiments

• The feature maps of distmaps with higher dimensions. The more abstract
features are worth being experimented.

• The coordinates, which consist of two dimensions representing X-axis and Y-
axis. As the desired hints are related to the spatial information, this is a
natural proposal.

• The feature maps of embeddings from the first U-Net. The performance of the
second U-Net may be improved by synthesizing the trained embeddings and
raw images.

• The stacked feature maps of distmaps and of embeddings. It remains to be
verified, if richer information leads to better performance.

Implementation

We compare the effects of different types of concatenative layer. Firstly, the distmap
(1-dimensional) can be directly forwarded. Alternatively, the distance regression fea-
tures instead of the distmap can be utilized. Before concatenation, we convert the
32-channel D-feat. into 8 and 32 dimensions (denoted as dfeat.8 and dfeat.32 in
Table 4.4) through a single convolutional layer. Meanwhile, we have also tested the
case of using embedding loss as the intermediate supervision (efeat.32). Specific-
ally, the embedding features from the first U-Net are concatenated with the images
as embedding module inputs. Furthermore, the distance regression features and
embedding features (dfeat.16+efeat.16) are also investigated. At last, augmenting
the input image with coordinates is tested. As proposed in [70], constructing dense
object-aware pixel embeddings cannot be easily achieved using convolutions and the
situation can be improved by incorporating information about the pixel location.
In this work, we augment the input image with two coordinate channels for the
normalized x- and y-coordinates, respectively. A similar implementation has also
been used in [12].

Results

Experimental results are summarized in Table 4.4. First of all, forwarding distmaps
is not as effective as forwarding feature maps, including the distance regression
features and the embedding features. The embedding features (efeat.32) can also
boost the performance, but not as significantly as the distance regression features.
This is verified by the fact that efeat.32 is worse than dfeat.32 and the mixed feature
map dfeat.16+efeat.16. For the distance regression feature itself, higher dimension
of 32 is preferred. Finally, augmenting images with coordinates does not show
apparent differences in our experiments. The effects could be further studied. For
example, augmenting each intermediate feature map with coordinates is also worth
being investigated.

46

4.2 Ablation Experiments

Table 4.4: Comparison of Different Types of Concatenative Layers. Denotation:
dfeat.16+efeat.16 = concatenated distance features of 16 dim and em-
bedding features of 16 dim. Others can be analogously educed.

Concatenative Net mSBDLayer

none (baseline) U-Net .794
coordinate U-Net .798
distmap W-Net .824
dfeat.8 W-Net .864
dfeat.32 W-Net .879
efeat.32 W-Net .847

dfeat.16+efeat.16 W-Net .873

4.2.5 Loss Weights as Hyper-Parameters

The weighting factors of both Linter and Lintra are previously set to 1. It is worth
investigating whether the weights have an influence on the optimization progress and
final results, as higher weight indicates that the term has more dynamics during the
optimization. With this in mind, the only change in this experiment is the weighting
factor of between-instance loss term. It is formularized by replacing the addition of
equally contributed Linter and Lintra in Equation 2.5:

Lemb = λ · Linter + Lintra

Linter =
1

C

C∑
cA=1

1

|NcA|
∑

cB∈NcA

[
1−Dcos(µcA , µcB)

]

Lintra =
1

C

C∑
c=1

1

Ec

Ec∑
i=1

[
Dcos(ei , µc)

] (4.3)

Since one of the to be solved problems is the occasionally failed segmentation
of adjacent leaves, the hypothetical cause is the within-instance loss Lintra has too
many influences on the embeddings. Based on this assumption, the tendency of
setting the between-instance loss weight λ is larger than 1, to amplify the effect of
Linter. After revisiting the two loss terms in Equation 4.3, one salient difference
between the two terms is that all impacts upon the individual embeddings in Linter
are obtained via their cluster centers µc after being applied average operation, while
the direct control on the individual embeddings ei exists in the within-instance loss
term Lintra. With this in mind, the dynamics of the embeddings during the optim-
ization progress from gradient descent of two losses are imbalanced.

This problem is corresponding to the fundamental question of whether this loss
format is effective for the embedding learning. Therefore, two different ablation ex-

47

4 Experiments

periments about the weighting factors of the two loss terms are conducted: constant
(here, Section 4.2.5) and adaptive (Section 4.2.6) loss weights.

Figure 4.10: Results of Different Loss Weights.
X-axis: weighting factor λ of Linter as formularized in Eq. 4.3. "only"
denotes that the embedding loss depends only on Linter.
Y-axis: mean best Dice scores of testing set.

Implementation

As introduced before, the weighting factor of Linter is investigated, by slicing it from
0.5 to 500 with keeping the weighting factor of Lintra identical to 1. The only weight-
ing factor that fewer than 1 is chosen as 0.5, to investigate if the amplification of
within-instance loss can bring improvement, despite that this breaks the hypothesis.
The maximal factor is set up to 500, which seems to be too large. The choice is
based on the fact that the embeddings are averaged in the between-instance loss.
To reconstruct the supervision from loss gradient upon each individual embedding,
the amplification is assumed to be as large as the number of embeddings inside of
one cluster. This assumption is very preliminary, but it is still worth being experi-
mented. In addition, an extra experiment termed "only" has also been conducted,
where the within-instance loss term Lintra is omitted, formularized as Lemb = Linter.
This set-up provides a baseline of the behaviors of two loss terms and baseline of the
numerical values of Lintra if the between-instance loss is the only objective. Needless
to say that if the between-instance loss Linter is omitted, the learned embeddings of
whole images are all identical.

To sum up, the weighting factors of between-instance loss are (0.5, 1, 10, 100,
500, "only"). In the experiments, two network architectures are used: U-Net with
2 Heads and W-Net with Intermediate Supervision and concatenative layer of feature
maps for distance regression. In the following context, they are abbreviated as U-
Net and W-Net for brevity. Both U-Net and W-Net experiments are using 8 dim
embeddings and Polar Form of embedding loss with local constraints. The distance
regression is trained with ReLU+MSE loss.

48

4.2 Ablation Experiments

(a) λ = 0.5 (b) λ = 10 (c) λ = 100 (d) only Linter

Figure 4.11: Learned Embeddings with Different Weights λ as in Lemb = λ · Linter+
Lintra. With ascending λ, overall segmentation performance becomes
worse (Figure 4.10) with the decreased consistency of embeddings in
the same object. It is worth noting that training with just the between-
instance loss term can also to some extent form clusters in the embed-
ding space.

Results

The mean best Dice scores of testing set are illustrated in Figure 4.10. It is clear that
the W-Net outperforms U-Net architecture for all weighting factors. For W-Net, the
best performance can be obtained by setting constant 1:1 weighting factors, while
for U-Net, the halved between-instance class surprisingly brings better results than
others. It is prominent that different weighting factors cause significantly different
results.

As the primitive of motive to set weighting factors for two loss terms is to em-
phasize the between-instance loss, the relationship of two terms are worth being
investigated apart from the final scores. In Figure 4.12, the ratios of two loss terms
Linter/Lintra are demonstrated with respect to the training steps. It is clear that the
larger the weighting factor applied on the between-instance loss Linter the smaller the
loss values are resulted. For the case weighting factor λ = 10 the numerical values
of two loss terms are approximately identical, which however brings in suboptimal
performance.

4.2.6 Adaptive vs. Constant Loss Weights

As in Section 4.2.5 experienced, setting a globally constant weight to one of the
pair similarities contributes to the performance indistinctively. Inspired by [26], the
adaptive weighting factors might regulate the dynamics of the two similarities more
spontaneously, as they can be defined in a self-paced manner with respect to the
simultaneous losses. The first proposal is defined as below:

Lemb = [L̂inter +m]+ · Linter + [L̂intra +m]+ · Lintra , (4.4)

where m denotes the relaxation factor, which ensures the weighting factors for loss
terms are not 0 even if they have been perfectly converged, and L̂ denotes the loss

49

4 Experiments

Figure 4.12: Comparison of Constant Loss Weights (with fixed weight of Lintra).
X-axis: training steps 0-200k;
Y-axis: ratio of Linter/Lintra in logarithmic scale.

value that is regarded as a constant that does not participate in the gradient descent
progress, implemented via the TensorFlow function stop_gradient() [75]. It makes the
two terms have the maximal amplification of 1+m and shrink of m, where m should
be greater than 0 but not much. This modification ensures that the larger values of
Linter and Lintra would have larger weighting factors, and vice versa. In the following
discussion, this proposal is called Adaptive v1.

The previously introduced modification has one problem, that the definition of
"large" values are absolute, without considering the other term. This might slow
down the training progress, if both of the losses are equally small and the learning
rate also has been decayed to a small value. To keep the learning rate as the single
variable for the step size of gradient descent, the following adaptive weights are
presented, which is based on the ratio of the two terms Linter and Lintra :

ω1 = L̂inter/L̂intra
ω2 = L̂intra/L̂inter
Lemb = [K(ω1)]+ · Linter + [K(ω2)]+ · Lintra ,

(4.5)

where ω denotes ratio between Linter and Lintra, K(ω) defines a function mapping
ratios to ranged weighting factors. K(ω) should let weighting factors equal 1, if Linter
and Lintra are equal. And the mapped weighting factors should be ranged, which
should also avoid extremely large margins between two terms. Thus two criteria are:

K(1) = 1

max{K(ω)}
min{K(ω)}

� ∞ .
(4.6)

50

4.2 Ablation Experiments

An example of such a function is depicted in Figure 4.13. Without loss of gen-
erality, this is the used function in the following experiment. The second proposal
takes the relative ratio of two terms in consideration, which can avoid the case of
doubled effect of decreasing the learning rate. It is called Adaptive v2 in the follow-
ing discussion.

−1 0 1 2 4 6 8
ω

0.0
0.4

1.0

2.0

3.0

4.0

5.0


(ω

)

Figure 4.13: An Example: K(ω) = 5

1 + 4 · exp(−(ω − 1))
,

where K(1) = 1, min{K} = K(0) = 0.4 and max{K} = K(∞) = 5

Implementation

In this ablation experiment, three formats of weighting factors are investigated. The
vanilla version is the constant and identical attribution of two terms, termed Con-
stant 1:1. The first adaptive weighting format is according to Equation 4.4 with
m = 0.25, termed Adaptive v1 and the second adaptive weighting format is accord-

ing to Equation 4.5 with K(ω) =
5

1 + 4 · exp(−(ω − 1))
, termed Adaptive v2.

As in Figure 4.14 shown, both versions of proposed adaptive weighting formats have
the characteristic of encouraging the equally valued within-instance and between-
instance losses. In addition to the difference mentioned previously, that the weight-
ing factors are 1 if the losses of two terms are equally small for Adaptive v2, there
are also other differences. The Adaptive v2 is more radical, according to Figure 4.14,

as the theoretical maximal relative amplification is
max{K(ω)}
min{K(ω)}

=
K(0)

K(∞)
= 12.5,

while the maximal relative amplification of Adaptive v1 is 1.25/0.25 = 5. Moreover,
the goal of Adaptive v2 is more straightforward to the optimum, as the isolines in
Figure 4.14 illustrated.

51

4 Experiments

(a) Eq. 4.4: m = 0.25 (b) Eq. 4.5: K(ω) = 5

1 + 4 · exp(−(ω − 1))

Figure 4.14: Comparison of Adaptive Weights.
Colors denote the ratios of the weighting factors intra/inter.

All three experiments are conducted with the embeddings of 8 dims using W-Net
with intermediate supervision of preliminary embedding loss. The concatenative
layer is the distance features. The loss functions are in the format of Polar Loss
Function and with local constraints.

Results

Table 4.5 shows the results of three set-ups with respect to the mean best Dice
scores. The results indicate the adaptive weights for the two loss terms cannot ef-
fectively improve the final performance based on the used dataset and parameters.
Despite that the results are not expected, the hidden circumstances are worth being
investigated.

Table 4.5: Results of Adaptive and Constant Loss Weights.
Evaluated by mean best Dice.

Constant 1:1 Adaptive v1 Adaptive v2

87.9% 86.0% 84.2%

The modification of weighting factors is based on the assumption, that the numer-
ical values of two loss terms are of equivalent meanings. If this assumption applies,
the same values of two loss terms should indicate the same degree of how they are
optimized. Revisit the loss formats of two terms, the within-instance loss is referred

52

4.2 Ablation Experiments

to the distances between points and their centroids, while the between-instance loss
is referred to the distances between different instance centroids: the formats are not
symmetric. Despite that the theoretical upper and lower bounds of two loss terms
are identical, namely 1 and 0, the intermediate values may reflect the level of optim-
ization heterogeneously. Due to the asymmetry of the loss formats, this assumption
can be hardly turned to be confirmed.

It is still interesting to verify that if the numerical values of two loss terms are
controlled as desired, even if the regularized loss values do not imply the expected
improvement on final performance. Figure 4.15 depicts the ratios L̂inter/L̂intra with
respect to the training steps from 0 to 200k. Before 60k steps, the ratios L̂inter/L̂intra
are of expectation. In the later stage, the effect of adaptive weighting factors dis-
appeared. It can be confirmed from this observation that with the adaptive weights
the values of two loss terms are controlled as expected in the early training stage.

Figure 4.15: Comparison of Adaptive Weights.
X-axis: training steps 0-200k; Y-axis: L̂inter/L̂intra.
Before 60k steps, the ratios L̂inter/L̂intra are of expectation. In the
later stage, the effect of adaptive weighting factors disappeared.

4.2.7 Dimension of Embeddings

As mentioned in Section 2.2.3, if the embeddings with local constraints could be
perfectly and efficiently learned, only four labels would be generated. With this
extreme case and the benefits of local constraints in mind, the dimension of em-
beddings should be set low. In [13] and [10], the dimension of embeddings is set
to 32 and 16 respectively to achieve best performance. Furthermore, it has been
compared using 4 dimensional and 16 dimensional embeddings in [10]. In this ex-
periment, a wider range of dimensions are investigated, namely 4, 8, 16, 32 and 64

53

4 Experiments

dims. The results showcase that it is beneficial to leverage local constraints in in-
stance segmentation, inasmuch as lower dimensions have advantages regarding with
computation and memory overheads.

To avoid confusion, the dimension investigated here is the one of final embeddings.
The U-Net backbone is identical for all experiments with the first convolutional layer
transforming arbitrarily dimensional vectors to 32 dim and with the last convolu-
tional layers (considered as a block, as the last convolutional layer does not change
dimension) transforming back to 32 dim. The dimension discussed in this experiment
is referred to the settings of head-dependent joint block after the U-Net backbone,
namely the dimension of outputs of corresponding heads after U-Net backbones. See
Appendix A for more details of network architectures.

Implementation

Without loss of generality, the embeddings of intermediate supervision, the final
embeddings and the feature maps of distmap head are set identically from 4 dim
to 64 dim. Two network architectures are taken in this experiments: U-Net with
2 heads 4.7(b) and W-Net with supervision 4.7(d). In the following discussion,
they are abbreviated by U-Net and W-Net for brevity. The concatenative layer is
the feature map of the distmap head in the end of the first U-Net. All feature
maps are of 32 dimensions after the first convolutional layer. The loss of distance
regression is ReLU+MSE. As the higher dimension requires higher GPU memory, all
the experiments up to and including 16 dim are trained with batch_size=4; 32 dim
and 64 dim are trained with batch_size=2 to decrease the memory consumption.

Figure 4.16: Results of Different Embedding Dimensions.
X-axis: the number of dimensions of embeddings in the loss functions.
Y-axis: mean best Dice scores of testing set.

Results

The mean Symmetric Best Dice (mSBD) of CodaLab’s submission is the evaluation
metric. Figure 4.16 shows the results. Not surprisingly, W-Net outperforms U-Net
in all dims. In the cases of U-Net, the results are almost equally better for 4 and 8

54

4.2 Ablation Experiments

dim, reaching around 79%, than higher dimensions, around 76%. In contrast, 4 dim
results in 85% with W-Net, which is surpassed by the best performance of 88% for
8 dim.

The higher the dimensions are, the more information and features the embeddings
may contain. It is interesting to notice that the higher dimensions do not mean the
better performance. And it saturates at 8 dim, which is the chosen parameter in
the final methodology. This brings the best mSBD scores with the lowest possible
dimensions of embeddings.

4.2.8 Loss for Distance Regression

Different loss functions may have tremendous influence upon the results. Some of
them can be explained only intuitively or empirically, as the complicated training
progress is quite difficult to be proven precisely. In this task, the format of loss
function for distance regression is one of the examples. The target ground truth is
ranges between 0 and 1, thus the most intuitive choice is the Linear+MSE, which
has an adequate interpretation as maximizing likelihood with respect to probability
theory [76]. The replacement of linear activation function with ReLU is natural, as
only non-negative values are expected. In contrast, Sigmoid+BCE seems to be an al-
ternative, as the output of the combination of Sigmoid+BCE is continuously ranged
between 0 and 1, which fulfills the desired outputs. In the following experiment, the
real-world results are compared with these two set-ups.

0

0.001

0.01

0.1

(b) Losses of Distmaps
0

0.001

0.01

0.1

(c) Losses of Embeddings

Figure 4.17: Loss Comparison for Distance Regression.
X-axis: training steps 0-200k; Y-axis: loss in logarithmic scale.
The bold curves represent moving averages of original values.

55

4 Experiments

Implementation

The W-Net with intermediate supervision network is used in this experiment, where
the first U-Net outputs 8 dimensional feature maps and the second 16 dimensional.
Concatenative layer is the feature map directly from last layer of the first U-Net, with
the shape of (512, 512, 8). The distance regression loss is added after the head for
distance feature map. In this experiment the two types of activation functions and
loss functions are compared, namely ReLU+MSE and Sigmoid+BCE. The formulae
are introduced in Section 2.5 via Equation 2.13 - Equation 2.17.

Results

The following three points are evaluated and compared:
• the losses of distance regression with respect to training steps;

• the losses of final embeddings with respect to training steps;

• the final best dice scores.
Figure 4.17 shows the losses of distmaps and embeddings respectively. Fig-

ure 4.17(b) indicates that the Sigmoid+BCE is hard for distance regression to con-
verge or extremely easy to saturate, whereas the combination of ReLU+MSE has
a clear convergence during training. Despite that conspicuous difference, the losses
of embeddings are not as much influenced. In Figure 4.17(c), the orange curve is
more often located above the blue one, which can be corroborated by final best dice
scores: ReLU+MSE outperformed Sigmoid+BCE by 1.6% from 84.2% to 85.8%.

4.2.9 Clustering

Apart from the default angular clustering used along through the experiments, other
three clustering techniques have been tested based on the predicted embeddings of
best results: Mutex Watershed [39], Mean Shift [30] and HDBSCAN [37]. On the
one hand, this provides a reference for the performance of different clustering meth-
ods on the embeddings trained with cosine similarity based loss. On the other hand,
it can also indirectly reflect the quality of embeddings generated by U-Net and W-
Net. Results are shown in Table 4.6.

Results

In conclusion, the angular clustering has advantages in terms of performance and
speed. Nevertheless, it should be noted that this method is only applicable to the
case, where seeds are available and clusters are orthogonal in the embedding space.
Additionally, all clustering approaches produce better results with embeddings pre-
dicted from the W-Net, which again confirms the improvement of our proposed
method.

56

4.3 Comparison against State-of-the-Art

Table 4.6: Comparison of Local/Global Constraints, Network and Clustering. De-
notations: Local = local constraints, otherwise global; 64d = 64 dim
embeddings, otherwise 8 dim; AC = Angular clustering; MWS = Mutex
Watershed [39].

Local Net Clustering mSBD

3 W-Net AC .879
3 W-Net 64d AC .854

W-Net AC .835
W-Net 64d AC .823

3 U-Net MWS .719
3 W-Net MWS .771
3 U-Net MeanShift .679
3 W-Net MeanShift .733
3 U-Net HDBSCAN .631
3 W-Net HDBSCAN .681

4.3 Comparison against State-of-the-Art

Comparison of state-of-the-art methods on the CVPPP LSC dataset is quantitat-
ively shown in Table 4.7.

It is clear that the learning based methods (denoted with backbones) can achieve
better results than the first four classical methods (IPK [4, 60], Nottingham [4],
MSU [4,62] and Wageningen [4]). The last four methods (DiscLoss [11], CE-RH [13],
E-LC [10], W-Net [77]) are based on embedding learning with similarity pair loss.
Roughly speaking, they bring in promising results. The overall result mSBD for
A1-5 outperforms all others. In the leaderboard, our overall result is at the 1. posi-
tion by paper submission. Furthermore, the average of mSBD scores for Arabidopsis
images (A1, A2, A4) outperforms the second best results from three different users
respectively by over 4%, namely 0.873 to 0.917. Due to the extremely imbalanced
training images on Arabidopsis (783 images) and Tobacco (27 images), the results
on testing set A3 are not as good as others, with mSBD of 0.77. Compared to this,
the current 1. place mSBD of A3 in the leaderboard reaches 0.89. It implies that
the sufficient number of training images is critical in our proposed method. We
leave this room for improvement in the future. More discussions about the proposed
method can be found in Chapter 5.

One thing worth mentioning is that the authors tend to not submit their results
to the leaderboard of CodaLab, which makes the consistent comparison and review
rather difficult.

57

4 Experiments

Table 4.7: Comparison of Results. Abbreviations: Aug. = Data augmentation; Emb.
= Metric of embedding similarity; Fg. = Ground truth foreground masks
are used; syn = Synthetic images are used for training; HG = Stacked
Hourglass network; Lb. = Results shown in the leaderboard of CodaLab.

Method Backbone Train Aug. Emb. Fg. Lb. mSBD

A1 A1-3 A1-5

IPK [4,60] - A1-3 3 .791 .782 -
Nottingham [4] - A1-3 3 .710 .686 -
MSU [4,62] - A1-3 3 .785 .780 -
Wageningen [4] - A1-3 3 .773 .769 -

MRCNN [10,42] ResNet A1-3 - .797 -
Stardist [10, 15] U-Net A1-3 - .802 -
IS-RA [78] FCN A1 .849 - -
Ward [65] ResNet A1-4+syn 3 .900 .740 .810
UPGen [66] ResNet A1-4+syn 3 .890 .877 .874

DiscLoss [11] ResNet A1 3 euc 3 .842 - -
CE-RH [13] HG A1 3 cos .845 - -
E-LC [10] U-Net A1-3 cos - .831 .823
W-Net (ours) U-Net A1-4 cos 3 3 .919 .870 .879

4.4 Application on Human U2OS Cells

The proposed method has also been tested on the image set BBBC006v1 of human
U2OS cells from the Broad Bioimage Benchmark Collection [7]. Totally 754 images
are randomly separated into two equally distributed training (including 20% valid-
ation set) and testing set with 377 images respectively. The images are of single
channel and the data type is uint16 instead of uint8 as in CVPPP Leaf Segment-
ation dataset. Other set-ups are identical to previously introduced ones. U-Net
and W-Net with distance concatenative layer have been used to show results with
mSBD and mean Average Precision with IoU={0.5, 0.55, 0.6, ..., 0.9} (mAP). The
definition can be found in Section 2.5.

4.4.1 Results

The mSBD has increased from 0.896 to 0.915 and the mAP from 0.577 to 0.664.
The examples of final labels on the testing set are illustrated in Figure 4.18. As
reported in [10], some embeddings around boundaries might be incomplete, which
leads to incomplete segmentations. This problem has been mainly solved as show-
cased in Figure 4.18. Nevertheless, there are still objects that occasionally cannot
be detected. The post-processing can also be further finetuned.

58

4.4 Application on Human U2OS Cells

Ground Truth U-Net W-Net

Figure 4.18: Cell Segmentation Results of the BBBC006v1 Data: Ground Truth
(left), U-Net (middle) and W-Net (right); Each row illustrates one ex-
ample. Improvement from U-Net to W-Net is salient, as on the CVPPP
LSC dataset. The mSBD and mAP score have increased from 0.896 to
0.915 and from 0.577 to 0.664, respectively. The learned results of W-
Net are far from optimal: some cells are occasionally not detected. The
fourth row illustrates one mainly failed example.

59

4 Experiments

4.5 Application on Cityscapes

Lastly, the proposed method is tested on the multi-class dataset: Cityscapes. The
experiment is considered as a toy example to confirm the feasibility of the proposed
method on the more complicated dataset. In the following experiment, the classes
of objects are ignored, i.e., each object is considered as a single instance without
mentioning it is a car or a person. It is more challenging, as the network should learn
the more general features amongst all semantic classes. Furthermore, the results are
only visually illustrated, without giving the evaluation scores quantitatively. The
reason is that this thesis if focusing on the instance segmentation, and the quant-
itative evaluation of multi-class instance segmentation requires semantic labels in
advance. The results have shown decent accuracy of segmentations even without
ad-hoc refinement, which inspires the future work to expand the proposed method
to an end-to-end instance segmentation method for multi-class dataset.

The most salient difference of implementation is the augmentation, which is intro-
duced in Section 4.5.1. Following that, a plenty of examples of instance segmentation
predictions are visually illustrated.

4.5.1 Augmentation

Figure 4.19: Augmentation for Cityscapes.

60

4.5 Application on Cityscapes

As the image size (1024×2048) of Cityscapes dataset is larger than Leaf Segment-
ation and the images are rectangular, not square formed as in Leaf Segmentation,
the simple augmentation is applied to the images before training. As depicted in
Figure 4.19, the images are equally cut to two parts firstly. Then, the left part
is horizontally mirrored, since all images are structurally symmetric. Finally, both
mirrored left part and original right part are resized from (1024×1024) to (512×512)
and are fed into the W-Net.

This augmentation can bring two advantages:

• The size of each input image is decreased from (1024×2048) to (512×512),
which enables training using batch on a single GPU;

• As denoted in Figure 4.19, the perspectives from left and right parts are unified.
The training images then have the vanishing point always at the middle of the
left boundaries, which can promote the robustness of training processing.

4.5.2 Visual Results

In this toy experiment, only visual results of predictions on the testing set are il-
lustrated qualitatively in Figure 4.20 and Figure 4.21. The results show that the
proposed method has promising potential also on multi-class instance segmentation.
Even the toy experiment has ignored the semantic classes, it results in still decent
segmentations.

In the testing images with different classes, like car and person, the network is
capable to detect instance objects of all classes. The adjacent objects can also be to
some extent correctly segmented. Even in some abnormal cases, like a person before
a tram, both objects of extremely different sizes can still be detected and segmented.

The problems are also salient. Occasionally, the adjacent objects cannot be seg-
mented, same as the experiments in other datasets. Moreover, some objects cannot
be detected. The possible reason might be the poor quality of distance regression,
as in this case, it is much more difficult to train due to the more complicated back-
ground and multiple semantic classes.

61

4 Experiments

Raw Image Prediction

Figure 4.20: Citycapes Results: Part 1.

62

4.5 Application on Cityscapes

Raw Image Prediction

Figure 4.21: Citycapes Results: Part 2.

63

5 Evaluation

To this end, the improvement made by the proposed W-Net has been showcased in
the previous chapters. In this chapter, the proposed method is evaluated primarily
with respect to the shortcomings. The failed results are discussed and the corres-
ponding weaknesses of the proposed method are presented in Section 5.1. Following
that, the widely used format of similarity loss pair is revisited in Section 5.2.

5.1 Weaknesses

The proposed method has several noticeable weaknesses. First, it often fails in the
cases when the instance objects are extremely overlapped. Moreover, although it
is able to promote the accuracy of segmentation, the overhead of computation is
considerable. It is a detour compared to the original U-Net with two heads, as the
shared top-down pathway ensures the efficient training and testing progress. The
trend of deep learning network construction shall be the shared features and parallel
architectures rather than serial architectures. The proposed method has achieved the
improvement of accuracy but lost the elegant architecture and efficiency. This can
be compensated by, for example, subjoining semantic segmentation network into the
first distance regression module. Last but not least, the method is finetuned upon
the relatively uncomplicated dataset CVPPP LSC, which contains only one class.
The distmap is easy to train, inasmuch as the instance objects are mainly of the same
color: green. The application on other more complex datasets, such as Cityscapes,
needs more detailed refinement. In the following sections, these shortcoming are
investigated in details.

Table 5.1: Results of Testing Sets. Evaluated by mean Symmetric Best Dice. The
proposed method results in the best performance amongst all testing sets
except for Tobacco (A3).

Leaderboard A1 A2 A3 A4 A5 A1-5 A1,2,4
Tobacco Arabidopsis

1. Place 92% 92% 89% 91% 88% 88% 92%

2. Place 92% 86% 88% 87% 88% 88% 88%

Proposed 92% 92% 77% 91% 88% 88% 92%

65

5 Evaluation

5.1.1 Demanding Training Images

The detailed experiment results are shown in Table 5.1 per testing set. The testing
sets consist of 5 files A1-5, where A1, A2, A4 contain images of Arabidopsis, A3
contains images of Tobacco, and A5 is the mixed file from previous four files. The
testing sets contain {33, 9, 56, 168, 235} images for A1-5, respectively. All images
from A3 appear also in A5, i.e. the number of testing images for Tobacco is 112.
In the contrast, the training sets consist of 4 files A1-4, where A1, A2, A4 contain
totally 783 images of Arabidopsis, and A3 contains only 27 images of Tobacco. Res-
ults from first and second place in the leaderboard at CodaLab together with the
proposed results are compared.

It is salient that the only disadvantage of the proposed method is caused by
Tobacco images. No doubt that the extremely imbalanced training and testing sets
play a significant role in the performance. Apart from this, the results also show
that the sufficient number of training images is desirable in the proposed method.
The second possible reason is that the Tobacco images are, to some extent, more
complicated, as the secondary veins are also rather salient. This makes it even more
difficult to distinguish the veins inside of leaves and the boundaries between leaves.
As a result, the large leaf is often segmented to several smaller parts, as shown in
Figure 5.1 (a).

(a) Failed Case of Tobacco Image

(b) Failed Case of Large Leaves

Figure 5.1: Failed Cases.

66

5.1 Weaknesses

5.1.2 Scale Inflexibility

The dataset of CVPPP Leaf Segmentation Challenge consists of the plants through
out their growing periods, from tiny sprouts to large leaves. In the experiments,
it is found that those plants with extremely large leaves can be hardly decently
segmented. One example is shown in Figure 5.1 (b). Three facts can be the potential
reasons for the phenomenon:

1. The number of training images of this type is insufficient. It is similar for the
Tobacco training set;

2. The number of instances in one image is large, which might make the embed-
ding space more difficult to train;

3. Last but not least, they are tough problems themselves. The leaves are severely
overlapped, which leads to the circumstance that a number of them are incom-
plete. Furthermore, the ambiguity between midveins and boundaries is more
critical.

Similar cases can also be found from the results on Cityscapes (Figure 4.20 and
Figure 4.21), where the large objects and small objects are the most vulnerable
parts.

Figure 5.2: Expected Processing Pipeline towards Panoptic.

5.1.3 A Detour for Accuracy

One of the trends of novel network architectures is to compress the ad-hoc heads
based on the shared architectures and to exploit the shared features as efficiently as
possible. The introduced U-Net with two heads is one of the examples. The benefit
is clear, that the computational overhead can be significantly reduced. The pro-
posed W-Net does improve the accuracy of segmentation, however, it breaks up the
elegant design for more efficiency. It is considered as a temporary detour between
the single-class instance segmentation and general instance segmentation. The first
stage can be subjoined with other tasks, such as semantic segmentation. The whole
processing pipeline can thus be depicted as in Figure 5.2, making it towards pan-
optic. To this end, each pixel of original images is mapped to a higher-dimensional
embedding with both semantic labels and instance labels. In this outlook, the first

67

5 Evaluation

stage of distance regression can be performed more efficiently, as the features can
also be shared to the semantic segmentation task.

5.1.4 Application Constraints

The core of the proposed method is to exploit the features of distance regression,
which implies that the distance regression shall be easy to learn to achieve the
improvement. Intuitively speaking, it is believed that the distance regression is gen-
erally easier to learn, compared with embedding module. Nevertheless, the salient
improvement can be seen, if the dataset is single-class and if the target objects
are similar. The CVPPP LSC is a perfect example. The detailed finetuning for
more complicated datasets, such as Cityscapes, is expected, to show the feasible
application of the proposed method on general towards real-world cases. Conclus-
ively, the proposed method is currently preferably suitable for single-class instance
segmentation, where the foreground and background are relatively easy to recognize.

Figure 5.3: Dilemma of Embeddings: Left or Right?

5.2 Rethinking Similarity Loss Pair

The loss format consisting of two similarity terms is widely used in the approaches
of pixel embedding learning. It shows potential advantages in handling complex
shapes and dense objects. However, in some specific circumstance, this loss format
could be imperfect, as the guidance from the two loss terms might be contradictory.
Consider a toy example as illustrated in Figure 5.3. There are two clusters: red
and green, with the green embeddings being fixed for brevity. The tiny rectangles
denote the embeddings and the stars denote the cluster centroids. The ground truth
status of red cluster is depicted with a dotted rectangle, in which case the desired

68

5.2 Rethinking Similarity Loss Pair

between-class distance from the red cluster centroid to the green is also illustrated.
The right clusters of red and green denote the current case. Take a closer look at
the arrowed red embedding:

• The within-instance loss term encourages this embedding to move closer to
the red centroid (marked as star): the right direction;

• The between-instance loss term expects longer distance between two clusters,
which results in the ground truth status as the left half image illustrated. In
this context, the embedding seems to be pushed to the left direction.

To sum up, the arrowed embedding has double issues: it is confused by the
between-instance and within-instance terms at the same time. Taking this toy ex-
ample into consideration, it is believed that this loss format is suboptimal, as in some
specific circumstance, the guidance from the loss function can be contradictory. It
is a strict criticism, as this unstable situation can be mitigated if the embeddings
are either pushed together first or pulled away first. After that, the loss will focus
on the other problem. Or the numerical values of each term can reflect the priority
for the upcoming action.

It is believed that the whole training progress with neural convolutional layers
under this loss format is so result-oriented, that the hidden processing can hardly
be observed or controlled. [79] has proposed a mechanism for generalization of 3D
point clouds spatial relations that can perform optimization beyond convolution. I
believe that this kind of module could inspire to design a novel mechanism that
could impose direct supervision on the transformation from pixels to embeddings.

69

6 Final Remarks

6.1 Conclusions

There are two main contributions of this thesis. The first one is corresponding to
the novel W-Net architecture, which promotes the single-class instance segment-
ation significantly. The second one is corresponding to the thorough analysis of
U-Net based cosine embedding learning approach with local constraints. A number
of ablation experiments have been conducted to supplement the vacancies in this
field. In the following, these two contributions are conclusively presented.

The baseline of this thesis is the U-Net with two heads in [10], where the pixel
embedding learning using cosine similarity and local constraints are used. The res-
ults of the application on CVPPP Leaf Segmentation Challenge were on par with
the state-of-the-arts, however, some adjacent objects were not correctly segmented
occasionally. This is the motivation of this thesis: to improve the performance on
the basis of the U-Net based pixel embedding learning using cosine similarity and
local constraints on single-class dense instance segmentation.

During the experiments, it is found that the distance regression is easy to learn,
both accurately and fast. The distance regression map can give the cues of the loc-
ation of objects (object-ness) and the clear differences of the inside regions and the
boundaries of the objects. To this end, it is nature to exploit the distance regres-
sion results more thoroughly to achieve the improvement of segmentation accuracy.
They are concatenated to the images as the new inputs for the other U-Net, as
it is believed that the concatenation can reserve more information than addition,
although the overheads of computation and memory are accompanied. Following
that, a number of ablation experiments about this concatenative layer are conduc-
ted. The conclusions are demonstrated in Section 6.1.1

The second contribution is regarded with the thorough ablation experiments on
the basis of pixel embedding learning, covering the cosine similarity and Euclidean
similarity metrics, the local and global constraints, the loss functions of distance
regression, the different dimensions of embeddings and the constant and adaptive
loss weights. In advance of this work, relative studies are mostly vacant to my best
knowledge. The proposed work aims to indicate the potential influences of these
parameters on the training processing and the final performance. The conclusions
are demonstrated in Section 6.1.2.

71

6 Final Remarks

6.1.1 Concatenative Layer

The main novelty of this work is the exploit of intermediate distance regression su-
pervision: the distance concatenative layer. A set of candidates of concatenative
layer are investigated, including the 1-dimensional distmap, 8-dimensional distance
features, 32-dimensional distance features, 32-dimensional embedding features, con-
catenated 16-dimensional distance features and 16-dimensional embedding features.
The cases of using embedding features are the application of stacked networks with
intermediate supervision [19].

The results show that the stacked network with intermediate embedding super-
vision can improve the performance, so can those with distance feature supervision
even further. In conclusion, the proposed distance concatenative layer is able to pro-
mote the segmentation accuracy significantly with minimal computation overhead.
It is believed that this module can also be subjoined with other state-of-the-art net-
work architectures. Moreover, it is expected to apply the proposed method to more
datasets.

6.1.2 Pixel Embedding Learning

A number of ablation experiments have been conducted corresponding to the dif-
ferent set-ups of the network architectures and the loss formats. Apart from the
types of concatenative layers, the following parameters have been investigated: the
cosine similarity and Euclidean similarity metrics, the local and global constraints,
the loss functions of distance regression, the different dimensions of embeddings and
the constant and adaptive loss weights.

Figure 6.1: Outlook of Embeddings. The radius represents the semantic label (class)
and the angle represents instance label.

72

6.2 Outlooks

6.2 Outlooks

6.2.1 End-to-End Multi-class Instance Segmentation

The proposed method is primarily focusing on the single-class instance segmenta-
tion, despite that the Cityscapes dataset is also tested as a toy example to show the
promising capability. The next step is naturally the end-to-end multi-class instance
segmentation. As discussed in Section 5.1.3, the first stage can be subjoined with
more complicated tasks, like semantic segmentation. Multi-task image segmenta-
tion via deep embedding learning is the desired goal in the future. Each pixel of
the original image is mapped to a embedding vector of rich features, containing
both semantic information of which given class this pixel belongs to, and instance
information of which individual object this pixel belongs to. Figure 6.1 illustrates
an example of expected embeddings.

Furthermore, as the embedding approaches have achieved much success in the field
of NLP, where word2vec [80] has successfully built the general word representations.
The embeddings from images can also be mapped to the same domain as the words
in the NLP field, making the embeddings themselves full of semantic meanings.

6.2.2 Similarity Loss Pair

As discussed in Section 5.2, the hidden mechanism behind the similarity loss pair
consisting of between-instance loss term and within-instance loss term remains un-
known. It is believed that why is more important than how well for the future
research. Therefore, this loss format is very worth being further studied. There are
a few differences between different similarity loss proposals: the L1 norm based loss,
the L2 norm based loss and the log-sum-exp based loss, as showcased in Chapter 2.
The relevant theoretical researches are expected. Furthermore, a more effective and
comprehensive mechanism that helps to transform embeddings with respect to the
loss functions is desirable.

73

Bibliography

[1] “Computer vision problems in plant phenotyping (cvppp2020).” https://www.
plant-phenotyping.org/CVPPP2020. Accessed: 2020-06-10.

[2] C. Costa, U. Schurr, F. Loreto, P. Menesatti, and S. Carpentier, “Plant phen-
otyping research trends, a science mapping approach,” Frontiers in Plant Sci-
ence, vol. 9, p. 1933, 2019.

[3] D. Houle, D. R. Govindaraju, and S. Omholt, “Phenomics: the next challenge,”
Nature reviews genetics, vol. 11, no. 12, pp. 855–866, 2010.

[4] H. Scharr, M. Minervini, A. P. French, C. Klukas, D. M. Kramer, X. Liu,
I. Luengo, J.-M. Pape, G. Polder, D. Vukadinovic, et al., “Leaf segmentation in
plant phenotyping: a collation study,” Machine vision and applications, vol. 27,
no. 4, pp. 585–606, 2016.

[5] “History of research on arabidopsis thaliana.” https://en.wikipedia.org/
wiki/History_of_research_on_Arabidopsis_thaliana. Accessed: 2020-06-
10.

[6] A. M. Jones, J. Chory, J. L. Dangl, M. Estelle, S. E. Jacobsen, E. M. Meyerow-
itz, M. Nordborg, and D. Weigel, “The impact of arabidopsis on human health:
diversifying our portfolio,” Cell, vol. 133, no. 6, pp. 939–943, 2008.

[7] V. Ljosa, K. L. Sokolnicki, and A. E. Carpenter, “Annotated high-throughput
microscopy image sets for validation.,” Nature methods, vol. 9, no. 7, pp. 637–
637, 2012.

[8] K. N. Niforou, A. K. Anagnostopoulos, K. Vougas, C. Kittas, V. G. Gorgoulis,
and G. T. Tsangaris, “The proteome profile of the human osteosarcoma u2os
cell line,” Cancer Genomics-Proteomics, vol. 5, no. 1, pp. 63–77, 2008.

[9] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban
scene understanding,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

[10] L. Chen, M. Strauch, and D. Merhof, “Instance segmentation of biomedical
images with an object-aware embedding learned with local constraints,” in In-
ternational Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 451–459, Springer, 2019.

i

https://www.plant-phenotyping.org/CVPPP2020
https://www.plant-phenotyping.org/CVPPP2020
https://en.wikipedia.org/wiki/History_of_research_on_Arabidopsis_thaliana
https://en.wikipedia.org/wiki/History_of_research_on_Arabidopsis_thaliana

[11] B. De Brabandere, D. Neven, and L. Van Gool, “Semantic instance segmentation
with a discriminative loss function,” arXiv preprint arXiv:1708.02551, 2017.

[12] D. Neven, B. D. Brabandere, M. Proesmans, and L. V. Gool, “Instance segment-
ation by jointly optimizing spatial embeddings and clustering bandwidth,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 8837–8845, 2019.

[13] C. Payer, D. Štern, T. Neff, H. Bischof, and M. Urschler, “Instance segmentation
and tracking with cosine embeddings and recurrent hourglass networks,” in
International Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 3–11, Springer, 2018.

[14] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,”
in Annual International Conference on Machine Learning, pp. 41–48, 2009.

[15] U. Schmidt, M. Weigert, C. Broaddus, and G. Myers, “Cell detection with
star-convex polygons,” in Medical Image Computing and Computer Assisted
Intervention - MICCAI 2018 - 21st International Conference, Granada, Spain,
September 16-20, 2018, Proceedings, Part II, pp. 265–273, 2018.

[16] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical image
computing and computer-assisted intervention, pp. 234–241, Springer, 2015.

[17] X. Qin, Z. Zhang, C. Huang, C. Gao, M. Dehghan, and M. Jagersand, “Basnet:
Boundary-aware salient object detection,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 7479–7489, 2019.

[18] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connec-
ted convolutional networks,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 4700–4708, 2017.

[19] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose
estimation,” in European conference on computer vision, pp. 483–499, Springer,
2016.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

[21] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated residual trans-
formations for deep neural networks,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[22] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, Z. Zhang, H. Lin, Y. Sun, T. He,
J. Mueller, R. Manmatha, et al., “Resnest: Split-attention networks,” arXiv
preprint arXiv:2004.08955, 2020.

ii

[23] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature
pyramid networks for object detection,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 2117–2125, 2017.

[24] B. De Brabandere, D. Neven, and L. Van Gool, “Semantic instance segmentation
for autonomous driving,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, July 2017.

[25] K. I. Appel andW. Haken, Every planar map is four colorable, vol. 98. American
Mathematical Soc., 1989.

[26] Y. Sun, C. Cheng, Y. Zhang, C. Zhang, L. Zheng, Z. Wang, and Y. Wei,
“Circle loss: A unified perspective of pair similarity optimization,” arXiv pre-
print arXiv:2002.10857, 2020.

[27] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax for face
verification,” IEEE Signal Processing Letters, vol. 25, no. 7, pp. 926–930, 2018.

[28] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding
for face recognition and clustering,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 815–823, 2015.

[29] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for person
re-identification,” arXiv preprint arXiv:1703.07737, 2017.

[30] K. Fukunaga and L. Hostetler, “The estimation of the gradient of a density
function, with applications in pattern recognition,” IEEE Transactions on in-
formation theory, vol. 21, no. 1, pp. 32–40, 1975.

[31] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE transactions on
pattern analysis and machine intelligence, vol. 17, no. 8, pp. 790–799, 1995.

[32] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature
space analysis,” IEEE Transactions on pattern analysis and machine intelli-
gence, vol. 24, no. 5, pp. 603–619, 2002.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[34] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm
for discovering clusters in large spatial databases with noise.,” in Kdd, vol. 96,
pp. 226–231, 1996.

[35] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan revisited,
revisited: why and how you should (still) use dbscan,” ACM Transactions on
Database Systems (TODS), vol. 42, no. 3, pp. 1–21, 2017.

iii

[36] R. J. Campello, D. Moulavi, and J. Sander, “Density-based clustering based on
hierarchical density estimates,” in Pacific-Asia conference on knowledge discov-
ery and data mining, pp. 160–172, Springer, 2013.

[37] R. J. Campello, D. Moulavi, A. Zimek, and J. Sander, “Hierarchical density
estimates for data clustering, visualization, and outlier detection,” ACM Trans-
actions on Knowledge Discovery from Data (TKDD), vol. 10, no. 1, pp. 1–51,
2015.

[38] L. McInnes, J. Healy, and S. Astels, “hdbscan: Hierarchical density based clus-
tering,” The Journal of Open Source Software, vol. 2, mar 2017.

[39] S. Wolf, C. Pape, A. Bailoni, N. Rahaman, A. Kreshuk, U. Kothe, and
F. Hamprecht, “The mutex watershed: efficient, parameter-free image partition-
ing,” in Proceedings of the European Conference on Computer Vision (ECCV),
pp. 546–562, 2018.

[40] S. Beucher and F. Meyer, “The morphological approach to segmentation:
the watershed transformation,” Mathematical morphology in image processing,
vol. 34, pp. 433–481, 1993.

[41] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics,
and function using networkx,” tech. rep., Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2008.

[42] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of
the IEEE international conference on computer vision, pp. 2961–2969, 2017.

[43] H. Chen, X. Qi, L. Yu, and P.-A. Heng, “Dcan: deep contour-aware networks
for accurate gland segmentation,” in Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2487–2496, 2016.

[44] M. Bai and R. Urtasun, “Deep watershed transform for instance segmentation,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Re-
cognition, pp. 5221–5229, 2017.

[45] S. Peng, W. Jiang, H. Pi, H. Bao, and X. Zhou, “Deep snake for real-time
instance segmentation,” arXiv preprint arXiv:2001.01629, 2020.

[46] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” in Advances in neural information
processing systems, pp. 91–99, 2015.

[47] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional one-stage ob-
ject detection,” in Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 9627–9636, 2019.

[48] C. Lim, “Mask r-cnn.” https://www.slideshare.net/windmdk/mask-rcnn,
2017.

iv

https://www.slideshare.net/windmdk/mask-rcnn

[49] W. Abdulla, “Mask r-cnn for object detection and instance segmentation on
keras and tensorflow.” https://github.com/matterport/Mask_RCNN, 2017.

[50] Z. Huang, L. Huang, Y. Gong, C. Huang, and X. Wang, “Mask scoring r-cnn,” in
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

[51] X. Zhang, G. An, and Y. Liu, “Mask r-cnn with feature pyramid attention for
instance segmentation,” in 2018 14th IEEE International Conference on Signal
Processing (ICSP), pp. 1194–1197, 2018.

[52] J. Liu and P. Li, “A mask r-cnn model with improved region proposal net-
work for medical ultrasound image,” in International Conference on Intelligent
Computing, pp. 26–33, Springer, 2018.

[53] A. Kirillov, Y. Wu, K. He, and R. Girshick, “Pointrend: Image segmentation
as rendering,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2020.

[54] Y. Lee and J. Park, “Centermask: Real-time anchor-free instance segmenta-
tion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2020.

[55] Y. Lee, J. Hwang, S. Lee, Y. Bae, and J. Park, “An energy and gpu-computation
efficient backbone network for real-time object detection,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CV-
PRW), pp. 752–760, 2019.

[56] H. Chen, K. Sun, Z. Tian, C. Shen, Y. Huang, and Y. Yan, “BlendMask: Top-
down meets bottom-up for instance segmentation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2020.

[57] E. Xie, P. Sun, X. Song, W. Wang, X. Liu, D. Liang, C. Shen, and P. Luo,
“Polarmask: Single shot instance segmentation with polar representation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2020.

[58] R. Zhang, Z. Tian, C. Shen, M. You, and Y. Yan, “Mask encoding for single shot
instance segmentation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2020.

[59] H. Ying, Z. Huang, S. Liu, T. Shao, and K. Zhou, “Embedmask: Embedding
coupling for one-stage instance segmentation,” 2019.

[60] J.-M. Pape and C. Klukas, “3-d histogram-based segmentation and leaf detec-
tion for rosette plants,” in European Conference on Computer Vision, pp. 61–74,
Springer, 2014.

v

https://github.com/matterport/Mask_RCNN

[61] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “Slic su-
perpixels compared to state-of-the-art superpixel methods,” IEEE transactions
on pattern analysis and machine intelligence, vol. 34, no. 11, pp. 2274–2282,
2012.

[62] X. Yin, X. Liu, J. Chen, and D. M. Kramer, “Multi-leaf tracking from fluor-
escence plant videos,” in 2014 IEEE International Conference on Image Pro-
cessing (ICIP), pp. 408–412, IEEE, 2014.

[63] H. Barrow, J. Tenenbaum, R. Bolles, and H. Wolf, “Parametric correspondence
and chamfer matching: Two new techniques for image matching,” in Proceed-
ings: Image Understanding Workshop, pp. 21–27, Science Applications, Inc
Arlington, VA, 1977.

[64] S. Beucher et al., “The watershed transformation applied to image segmenta-
tion,” Scanning microscopy-supplement-, pp. 299–299, 1992.

[65] D. Ward, P. Moghadam, and N. Hudson, “Deep leaf segmentation using syn-
thetic data,” arXiv preprint arXiv:1807.10931, 2018.

[66] D. Ward and P. Moghadam, “Scalable learning for bridging the species gap in
image-based plant phenotyping,” arXiv preprint arXiv:2003.10757, 2020.

[67] P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of sampled
functions,” Theory of computing, vol. 8, no. 1, pp. 415–428, 2012.

[68] L. R. Dice, “Measures of the amount of ecologic association between species,”
Ecology, vol. 26, no. 3, pp. 297–302, 1945.

[69] “2018 data science bowl: Evaluation.” https://www.kaggle.com/c/
data-science-bowl-2018/overview/evaluation. Accessed: 2020-06-10.

[70] D. Novotny, S. Albanie, D. Larlus, and A. Vedaldi, “Semi-convolutional oper-
ators for instance segmentation,” in European Conference on Computer Vision,
2018.

[71] V. Ulman, M. Maška, K. E. Magnusson, O. Ronneberger, C. Haubold,
N. Harder, P. Matula, P. Matula, D. Svoboda, M. Radojevic, et al., “An ob-
jective comparison of cell-tracking algorithms,” Nature methods, vol. 14, no. 12,
p. 1141, 2017.

[72] E. David, S. Madec, P. Sadeghi-Tehran, H. Aasen, B. Zheng, S. Liu, N. Kirch-
gessner, G. Ishikawa, K. Nagasawa, M. A. Badhon, C. Pozniak, B. de Solan,
A. Hund, S. C. Chapman, F. Baret, I. Stavness, and W. Guo, “Global wheat
head detection (gwhd) dataset: a large and diverse dataset of high resolution
rgb labelled images to develop and benchmark wheat head detection methods,”
2020.

vi

https://www.kaggle.com/c/data-science-bowl-2018/overview/evaluation
https://www.kaggle.com/c/data-science-bowl-2018/overview/evaluation

[73] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in The IEEE Interna-
tional Conference on Computer Vision (ICCV), December 2015.

[74] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[75] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous sys-
tems,” 2015. Software available from tensorflow.org.

[76] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, ch. 5. MIT Press,
2016. http://www.deeplearningbook.org.

[77] Y. Wu, L. Chen, and D. Merhof, “Improving pixel embedding learning through
intermediate distance regression supervision for instance segmentation.” Manu-
script submitted for publication, 2020.

[78] M. Ren and R. S. Zemel, “End-to-end instance segmentation with recurrent
attention,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 6656–6664, 2017.

[79] P. Jund, A. Eitel, N. Abdo, and W. Burgard, “Optimization beyond the convo-
lution: Generalizing spatial relations with end-to-end metric learning,” in 2018
IEEE International Conference on Robotics and Automation (ICRA), pp. 1–7,
IEEE, 2018.

[80] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

vii

http://www.deeplearningbook.org

A Network Architectures

Figure A.1: Original U-Net. 2.1 revisited.

Figure A.2: U-Net with 2 Heads.

ix

A Network Architectures

Figure A.3: Stacked U-Net (W-Net).

Figure A.4: Stacked U-Net (W-Net) with Intermediate Supervision.

x

B Extension: Ensemble Trick

During the experiments, it is found that the testing set A3 (Tobacco) is hard to ob-
tain decent results. The most significant reason is the extremely imbalanced number
of training images for Arabidopsis and Tobacco, as discussed in Chapter 5. Here, the
training images of A3 are augmented and they are trained separately to investigate
the performance.

Augmentation

The 27 training images are augmented to 250 images with following rules:

• horizontally mirror (probability=0.5);

• rotate (maximal ±10 deg, probability=0.8);

• zoom (maximal ×4 , probability=1.0).

Ensemble

Empirically, the augmented data do not bring in much better performance: they
are either improved less than 1% or even worse. However, it is found that for differ-
ent trainings with random augmentation, the results are very unstable for different
testing images. And roughly speaking, the larger the segmented instances are, the
better the final mSBD score is. The ensemble trick is thus applied to 5 randomly
chosen predictions of testing set A3, and the prediction which has the closer fore-
ground areas to the ground truth foreground is selected.

After this ensemble trick, the mSBD from A3 can be improved from 77% to 81%
and the overall mSBD can be improved from 88% to 89%. Figure B.1 illustrates
some examples of with and without this ensemble trick. It is believed that this trick
is not generally applicable, therefore it is considered only as an extension to the
main work.

xi

B Extension: Ensemble Trick

Raw Image W-Net W-Net w/ Ensemble

Figure B.1: Leaf Segmentation Results of the CVPPP2017 Testing Set A3: Raw
Images (left), W-Net (middle) and W-Net with Ensemble (right); Each
row illustrates one example. The mSBD score for testing set A3 has
increased from 0.77 to 0.81.

xii

C Online Access

Materials which are related to this thesis are permanently archived at https://
yuliwu.github.io/ma, including:

• This thesis;

• Slides for interim presentation;

• Slides for final presentation;

• Manuscript [77] (under review) for CVPPP’20, an ECCV’20 workshop;

• Other supplemental materials.

xiii

https://yuliwu.github.io/ma
https://yuliwu.github.io/ma

	Title
	List of Figures
	List of Tables
	List of Listings
	Nomenclature
	Introduction
	Related Work
	Convolutional Neural Networks
	U-Net
	Hourglass
	ResNet + FPN

	Loss Functions
	Metrics of Distance
	Cartesian Form of Embedding Loss
	Polar Form of Embedding Loss
	Circle Loss

	Clustering Techniques
	Radial and Angular Clustering
	Mean Shift
	Density Based Clustering
	Mutex Watershed

	State of the Art
	Instance-First Approaches
	One-Stage Approaches
	Deep Embedding Learning Approaches
	Other Approaches on Leaf Segmentation

	Other Techniques

	Method
	Processing Pipeline
	Cosine Embedding Loss with Local Constraints
	Feature Concatenative Layer
	From U-Net to W-Net

	Experiments
	Datasets
	CVPPP Leaf Segmentation
	BBBC006: U2OS Cells
	Cityscapes

	Ablation Experiments
	Cartesian vs. Polar Embedding
	Local vs. Global Constraints
	U-Net vs. W-Net
	Concatenative Layer
	Loss Weights as Hyper-Parameters
	Adaptive vs. Constant Loss Weights
	Dimension of Embeddings
	Loss for Distance Regression
	Clustering

	Comparison against State-of-the-Art
	Application on Human U2OS Cells
	Results

	Application on Cityscapes
	Augmentation
	Visual Results

	Evaluation
	Weaknesses
	Demanding Training Images
	Scale Inflexibility
	A Detour for Accuracy
	Application Constraints

	Rethinking Similarity Loss Pair

	Final Remarks
	Conclusions
	Concatenative Layer
	Pixel Embedding Learning

	Outlooks
	End-to-End Multi-class Instance Segmentation
	Similarity Loss Pair

	Bibliography
	Network Architectures
	Extension: Ensemble Trick
	Online Access

